ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Автор: Dr. Shane Ross

Загружено: 2021-06-22

Просмотров: 17893

Описание: Lecture 2 of a course on Hamiltonian and nonlinear dynamics. The Legendre transformation is a general mathematical technique for transforming variables of a scalar function of multiple variables, using the partial derivatives as the new variables. We give a geometric interpretation. Then we use the Legendre transformation to derive Hamilton's canonical equations. Finally we consider a 1 degree of freedom system, the spring-mass example, a version of the harmonic oscillator.

► Missed the first lecture, introducing Hamiltonian systems?
   • Hamiltonian Mechanics Explained: Why Study...  

► Next: Hamiltonian System Properties | Classical Uncertainty Principle | 2D Fluid Streamfunctions
   • Hamiltonian System Properties | Phase Spac...  

► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Instructor intro    • Professor Shane Ross Introduction  

► New lectures will be posted regularly
Subscribe https://is.gd/RossLabSubscribe​

► Follow me on Twitter
  / rossdynamicslab  

► A shorter, gentler introduction to Hamiltonian systems in 2D
   • Hamiltonian Systems - Nonlinear Systems wi...  

► See the entire playlist for this online course:
Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
https://is.gd/AdvancedDynamics

This course gives the student advanced theoretical and semi-analytical tools for analysis of dynamical systems, particularly mechanical systems (e.g., particles, rigid bodies, continuum systems). We discuss methods for writing equations of motion and the mathematical structure they represent at a more sophisticated level than previous engineering dynamics courses. We consider the sets of possible motion of mechanical systems (trajectories in phase space), which leads to topics of Hamiltonian systems (canonical and non-canonical), nonlinear dynamics, periodic & quasi-periodic orbits, driven nonlinear oscillators, resonance, stability / instability, invariant manifolds, energy surfaces, chaos, Poisson brackets, basins of attraction, etc.

► The entire class notes are in PDF form:
https://is.gd/AdvancedDynamicsNotes

► and in OneNote form:
https://1drv.ms/u/s!ApKh50Sn6rEDiRgCY...

►This course builds on prior knowledge of Lagrangian systems, which have their own lecture series, 'Analytical Dynamics'
https://is.gd/AnalyticalDynamics

► Continuation of this course on a related topic
Center manifolds, normal forms, and bifurcations
https://is.gd/CenterManifolds

► If you want a simple introductory course on Nonlinear Dynamics and Chaos, see:
https://is.gd/NonlinearDynamics

► References
The class will largely be based on the instructor’s notes.
In addition, references are:
Numerical Hamiltonian Problems by Sanz-Serna & Calvo
Analytical Dynamics by Hand & Finch
A Student’s Guide to Lagrangians and Hamiltonians by Hamill
Classical Mechanics with Calculus of Variations & Optimal Control: An Intuitive Introduction by Levi
Advanced Dynamics by Greenwood

Additional math texts that may also be useful are:
Nonlinear Differential Equations & Dynamical Systems by Verhulst
Introduction to Applied Nonlinear Dynamical Systems & Chaos by Wiggins
Differential Equations, Dynamical Systems, & Linear Algebra by Hirsch & Smale
Introduction to Mechanics & Symmetry by Marsden & Ratiu

Ross Dynamics Lab: http://chaotician.com​

Lecture 2021-06-22

action angle variables in classical mechanics quantum mechanics statistical physics thermal physics thermodynamics general relativity Jerrold Marsden Gibbs free energy quasiperiodic online course principle of least action cosmology universe quarks William Rowan Hamilton Hamilton-Jacobi theory three-body problem orbital mechanics incompressibility integral invariants of Poincare streamfunction fluids

#Hamiltonian #Legendre #LegendreTransformation #NonlinearDynamics #DynamicalSystems #Lagrangian #mathematics #Dynamics #Chaos #ChaoticDynamics #Canonical #Poisson #OptimalControl #Poincare #Lindstedt #Mathieu #ChaosTheory #HenonMap #HenonAttractor #HarmonicOscillator #Legendre #Universality #Hamilton #Jacobi #ThreeBody #Involutive #PeriodDoubling #Bifurcation #DifferenceEquation #PoincareMap #chaos #ChaosTheory #Lyapunov #Oscillators #HopfBifurcation #NonlinearOscillators #LimitCycle #Oscillations #nullclines #VectorFields #topology #geometry #IndexTheory #EnergyConservation #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CriticalPoint #PitchforkBifurcation #StructuralStability #DifferentialEquations #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Strogatz #Lorenz #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion #dynamics ​#mathematicians #maths #mathstudents #mathematician #mathfacts #mathskills #mathtricks #KAMtori #thermodynamics #Boltzmann

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Hamiltonian System Properties | Phase Space, Incompressibility, Classical Uncertainty

Hamiltonian System Properties | Phase Space, Incompressibility, Classical Uncertainty

A Simple yet Powerful Math Trick

A Simple yet Powerful Math Trick

Trigonometric Ratios & Identities | Class 1 | Maths Made Easy

Trigonometric Ratios & Identities | Class 1 | Maths Made Easy

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

Generating Function of a Canonical Transformation | Examples and the Big Picture | Lecture 7

Generating Function of a Canonical Transformation | Examples and the Big Picture | Lecture 7

Вывод уравнения Дирака

Вывод уравнения Дирака

Canonical Transformations | Hamiltonian Changes of Variables | Symplectomorphisms | Lecture 5

Canonical Transformations | Hamiltonian Changes of Variables | Symplectomorphisms | Lecture 5

Лагранжева механика: когда теоретическая физика стала реальной

Лагранжева механика: когда теоретическая физика стала реальной

A quick introduction to Legendre Transformations, by prof. V Balakrishnan

A quick introduction to Legendre Transformations, by prof. V Balakrishnan

Action-Angle Variables in Hamiltonian Systems | Visualizing Tori & Spheres in N Dimensions | Lect 10

Action-Angle Variables in Hamiltonian Systems | Visualizing Tori & Spheres in N Dimensions | Lect 10

Hamiltonian mechanics in 12 equivalent characterizations

Hamiltonian mechanics in 12 equivalent characterizations

Balloons and the Legendre Transform

Balloons and the Legendre Transform

Lagrangian vs Hamiltonian Mechanics

Lagrangian vs Hamiltonian Mechanics

Hamiltonian Flow Poincare Integral Invariants| Ignorable/Cyclic Coordinates | Lecture 4

Hamiltonian Flow Poincare Integral Invariants| Ignorable/Cyclic Coordinates | Lecture 4

Hamiltonian Mechanics & Advanced Dynamics | Online Course

Hamiltonian Mechanics & Advanced Dynamics | Online Course

Что такое СПИН? спин 1/2 и 3/2

Что такое СПИН? спин 1/2 и 3/2

15. Introduction to Lagrange With Examples

15. Introduction to Lagrange With Examples

Уравнение Шредингера и волновая функция (полный курс)

Уравнение Шредингера и волновая функция (полный курс)

Hamilton-Jacobi Theory | Canonical Transformations and Solving Hamiltonian Systems (Lecture 9)

Hamilton-Jacobi Theory | Canonical Transformations and Solving Hamiltonian Systems (Lecture 9)

Principle of Least Action, Lagrange's Equations of Mechanics | Calculus of Variations | Lecture 6

Principle of Least Action, Lagrange's Equations of Mechanics | Calculus of Variations | Lecture 6

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]