ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Principle of Least Action, Lagrange's Equations of Mechanics | Calculus of Variations | Lecture 6

Автор: Dr. Shane Ross

Загружено: 2021-07-06

Просмотров: 8016

Описание: Lecture 6, course on Hamiltonian and nonlinear dynamics. Variational principles of mechanics, namely the Principle of Least Action (also called principle of stationary action, principle of critical action, and Hamilton's principle), which is a global principle equivalent to the local principle of Lagrange's equations. We first give a handwavy physicsy way to derive to get Newton's equations, then consider some techniques in the calculus of variations, getting Euler-Lagrange equations.

► Next: Generating functions for canonical transformations | examples and the big picture
   • Generating Function of a Canonical Transfo...  

► Previous, Canonical transformations | Hamiltonian systems allowable changes of variables | symplectomorphisms
   • Canonical Transformations | Hamiltonian Ch...  

► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Instructor intro    • Professor Shane Ross Introduction  

► New lectures posted regularly
Subscribe https://is.gd/RossLabSubscribe​

► Follow me on Twitter
  / rossdynamicslab  

► See the entire playlist for this online course:
Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
https://is.gd/AdvancedDynamics

This course gives the student advanced theoretical and semi-analytical tools for analysis of dynamical systems, particularly mechanical systems (e.g., particles, rigid bodies, continuum systems). We discuss methods for writing equations of motion and the mathematical structure they represent at a more sophisticated level than previous engineering dynamics courses. We consider the sets of possible motion of mechanical systems (trajectories in phase space), which leads to topics of Hamiltonian systems (canonical and non-canonical), nonlinear dynamics, periodic & quasi-periodic orbits, driven nonlinear oscillators, resonance, stability / instability, invariant manifolds, energy surfaces, chaos, Poisson brackets, basins of attraction, etc.

Chapters
0:00 Canonical transformations come from generating functions via variational principles
2:21 Principal of least action
8:21 Initial approach to understanding how principle of least action leads to Newton's equations
30:32 Euler-Lagrange equations: More general, calculus of variations approach to principle of critical action, leading to Euler-Lagrange equations (Lagrange's equations in mechanics context)
49:00 Euler-Lagrange equations, example uses
49:59 Brachistochrone problem
54:29 Cubic spline curves (data fitting)

► Interactive action integral calculator (courtesy Cleon Teunissen)
http://cleonis.nl/physics/phys256/ene...

► Class notes in PDF form
https://is.gd/AdvancedDynamicsNotes

► in OneNote form
https://1drv.ms/u/s!ApKh50Sn6rEDiRgCY...

►This course builds on prior knowledge of Lagrangian systems
https://is.gd/AnalyticalDynamics

► Center manifolds, normal forms, and bifurcations
https://is.gd/CenterManifolds

► Introductory course on Nonlinear Dynamics & Chaos
https://is.gd/NonlinearDynamics

► References
The class will largely be based on the instructor’s notes.
In addition, references are:
Numerical Hamiltonian Problems by Sanz-Serna & Calvo
Analytical Dynamics by Hand & Finch
A Student’s Guide to Lagrangians and Hamiltonians by Hamill
Classical Mechanics with Calculus of Variations & Optimal Control: An Intuitive Introduction by Levi

Video clip from ‪@Vsauce‬'s The Brachistochrone
   • The Brachistochrone  

Ross Dynamics Lab: http://chaotician.com​

Lecture 2021-07-06

action angle in classical mechanics physics quasiperiodic online course Hamilton Hamilton's stationary action critical action Hamilton-Jacobi theory three-body problem orbital mechanics Symplectic Geometry topology

#Hamiltonian #EulerLagrange #PrincipleLeastAction #LeastAction #Brachistochrone #HamiltonsPrinciple #CanonicalTransformation #CyclicCoordinates #DynamicalSystems #IgnorableCoordinate #SymplecticGeometry #IntegralInvariant #PoincareCartan #CyclicVariable #Legendre #NonlinearDynamics #DynamicalSystems #Lagrangian #mathematics #Dynamics #ChaoticDynamics #Canonical #Poisson #OptimalControl #Poincare #Lagrange #Hamilton #Jacobi #HamiltonJacobi #ThreeBody #Bifurcation #DifferenceEquation #PoincareMap #chaos #ChaosTheory #Lyapunov #Oscillators #NonlinearOscillators #Oscillations #VectorFields #topology #geometry #EnergyConservation #Streamfunction #Streamlines #Vortex #SkewGradient #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CriticalPoint #PitchforkBifurcation #StructuralStability #DifferentialEquations #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Strogatz #Lorenz #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion #dynamics ​#mathematicians #maths #mathstudents #mathematician #mathfacts #mathskills #mathtricks #KAMtori #Arnold

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Principle of Least Action, Lagrange's Equations of Mechanics | Calculus of Variations | Lecture 6

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Generating Function of a Canonical Transformation | Examples and the Big Picture | Lecture 7

Generating Function of a Canonical Transformation | Examples and the Big Picture | Lecture 7

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

Вариационное исчисление с участием Flammable Maths

Вариационное исчисление с участием Flammable Maths

Принцип наименьшего действия

Принцип наименьшего действия

Canonical Transformations | Hamiltonian Changes of Variables | Symplectomorphisms | Lecture 5

Canonical Transformations | Hamiltonian Changes of Variables | Symplectomorphisms | Lecture 5

Prof Kenneth Young on

Prof Kenneth Young on "A Special Lecture: Principle of Least Action"

The Principle of Least Action

The Principle of Least Action

15. Introduction to Lagrange With Examples

15. Introduction to Lagrange With Examples

Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Уравнение Эйлера-Лагранжа

Уравнение Эйлера-Лагранжа

Lagrangian Mechanics II: Degrees of freedom, generalized coordinates and a cylinder

Lagrangian Mechanics II: Degrees of freedom, generalized coordinates and a cylinder

The Closest We Have to a Theory of Everything

The Closest We Have to a Theory of Everything

The Most Beautiful Result in Classical Mechanics

The Most Beautiful Result in Classical Mechanics

Deriving Hamilton's Principle

Deriving Hamilton's Principle

The Brachistochrone Problem

The Brachistochrone Problem

Derivation of the Brachistochrone | Euler-Lagrange Equation

Derivation of the Brachistochrone | Euler-Lagrange Equation

Hamilton-Jacobi Theory | Canonical Transformations and Solving Hamiltonian Systems (Lecture 9)

Hamilton-Jacobi Theory | Canonical Transformations and Solving Hamiltonian Systems (Lecture 9)

Hamiltonian Flow Poincare Integral Invariants| Ignorable/Cyclic Coordinates | Lecture 4

Hamiltonian Flow Poincare Integral Invariants| Ignorable/Cyclic Coordinates | Lecture 4

Объяснение принципа наименьшего действия: мини-урок физики

Объяснение принципа наименьшего действия: мини-урок физики

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]