ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Unsupervised Learning of Group Invariant and Equivariant Representations

Автор: Valence Labs

Загружено: 2022-10-25

Просмотров: 962

Описание: Join the Learning on Graphs and Geometry Reading Group: https://hannes-stark.com/logag-readin...

Paper "Unsupervised Learning of Group Invariant and Equivariant Representations": https://arxiv.org/abs/2202.07559

Abstract: Equivariant neural networks, whose hidden features transform according to representations of a group G acting on the data, exhibit training efficiency and an improved generalisation performance. In this work, we extend group invariant and equivariant representation learning to the field of unsupervised deep learning. We propose a general learning strategy based on an encoder-decoder framework in which the latent representation is separated in an invariant term and an equivariant group action component. The key idea is that the network learns to encode and decode data to and from a group-invariant representation by additionally learning to predict the appropriate group action to align input and output pose to solve the reconstruction task. We derive the necessary conditions on the equivariant encoder, and we present a construction valid for any G, both discrete and continuous. We describe explicitly our construction for rotations, translations and permutations. We test the validity and the robustness of our approach in a variety of experiments with diverse data types employing different network architectures.

Authors: Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, Djork-Arné Clevert

Twitter Hannes:   / hannesstaerk  
Twitter Dominique:   / dom_beaini  
Twitter Valence Discovery:   / valence_ai  

Reading Group Slack: https://join.slack.com/t/logag/shared...

~

Chapters

00:00 - Intro
01:45 - Motivation: Symmetry in Data
04:40 - Defining Representations and Equivariance
10:49 - Unsupervised Invariant Representation Learning
26:49 - Q+A
36:04 - Some Practical Examples for Groups
50:59 - Examples and Results for Graphs
55:52 - Results: E(3) and Sn Symmetry
1:00:52 - Q+A

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Unsupervised Learning of Group Invariant and Equivariant Representations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations

Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

MedAI #42: Domain Adaptation with Invariant Representation Learning | Petar Stojanov

MedAI #42: Domain Adaptation with Invariant Representation Learning | Petar Stojanov

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Positive Winter Jazz Cafe ~ Delicate Morning Jazz Music & Bossa Nova Instrumental for Work, Study

Positive Winter Jazz Cafe ~ Delicate Morning Jazz Music & Bossa Nova Instrumental for Work, Study

SLAE: Strictly Local All-atom Environment for Protein Representation | Yilin Chen

SLAE: Strictly Local All-atom Environment for Protein Representation | Yilin Chen

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

Invariant Risk Minimization

Invariant Risk Minimization

Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Групповое эквивариантное глубокое обучение — Лекция 1.6: Теория групп (однородные/факторные прост...

Групповое эквивариантное глубокое обучение — Лекция 1.6: Теория групп (однородные/факторные прост...

Transformers Discover Molecular Structure Without Graph Priors | Tobias Kreiman

Transformers Discover Molecular Structure Without Graph Priors | Tobias Kreiman

Chapter 2: Orbit-Stabiliser Theorem | Essence of Group Theory

Chapter 2: Orbit-Stabiliser Theorem | Essence of Group Theory

Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models | Giovanni Palla

Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models | Giovanni Palla

A Program to Build E(N)-Equivariant Steerable CNNs

A Program to Build E(N)-Equivariant Steerable CNNs

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Physics Simulation Just Crossed A Line

Physics Simulation Just Crossed A Line

04/06/2021 -- Elan Rosenfeld (CMU)

04/06/2021 -- Elan Rosenfeld (CMU)

A Theory of the Mechanics of Information - Christopher Hazard

A Theory of the Mechanics of Information - Christopher Hazard

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]