ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Автор: Valence Labs

Загружено: 2025-12-18

Просмотров: 635

Описание: Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/starkl...

Paper: Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

https://arxiv.org/abs/2511.09465

Abstract: Diffusion and flow matching approaches to generative modeling have shown promise in domains where the state space is continuous, such as image generation or protein folding & design, and discrete, exemplified by diffusion large language models. They offer a natural fit when the number of elements in a state is fixed in advance (e.g. images), but require ad hoc solutions when, for example, the length of a response from a large language model, or the number of amino acids in a protein chain is not known a priori.
Here we propose Branching Flows, a generative modeling framework that, like diffusion and flow matching approaches, transports a simple distribution to the data distribution. But in Branching Flows, the elements in the state evolve over a forest of binary trees, branching and dying stochastically with rates that are learned by the model. This allows the model to control, during generation, the number of elements in the sequence. We also show that Branching Flows can compose with any flow matching base process on discrete sets, continuous Euclidean spaces, smooth manifolds, and `multimodal' product spaces that mix these components. We demonstrate this in three domains: small molecule generation (multimodal), antibody sequence generation (discrete), and protein backbone generation (multimodal), and show that Branching Flows is a capable distribution learner with a stable learning objective, and that it enables new capabilities.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Discrete Flow Matching | Andrew Campbell

Discrete Flow Matching | Andrew Campbell

Protein Hunter: exploiting structure hallucination within diffusion for protein design | Yehlin Cho

Protein Hunter: exploiting structure hallucination within diffusion for protein design | Yehlin Cho

Flow-Matching vs Diffusion Models explained side by side

Flow-Matching vs Diffusion Models explained side by side

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Efficient generation of epitope-targeted de novo antibodies with Germinal

Efficient generation of epitope-targeted de novo antibodies with Germinal

There Is Something Faster Than Light

There Is Something Faster Than Light

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

What Sam Altman Doesn't Want You To Know

What Sam Altman Doesn't Want You To Know

BoltzGen: Toward Universal Binder Design | Generative AI for Drug Discovery (Hannes Stark, MIT)

BoltzGen: Toward Universal Binder Design | Generative AI for Drug Discovery (Hannes Stark, MIT)

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models

Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models

But how do AI images and videos actually work? | Guest video by Welch Labs

But how do AI images and videos actually work? | Guest video by Welch Labs

The future of intelligence | Demis Hassabis (Co-founder and CEO of DeepMind)

The future of intelligence | Demis Hassabis (Co-founder and CEO of DeepMind)

Intuition behind Mamba and State Space Models | Enhancing LLMs!

Intuition behind Mamba and State Space Models | Enhancing LLMs!

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Странные топологические состояния. Окно в организм. Новый климатический союзник. Новости QWERTY №364

Странные топологические состояния. Окно в организм. Новый климатический союзник. Новости QWERTY №364

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Amortized Sampling with Transferable Normalizing Flows | Charlie Tan & Majdi Hassan

Amortized Sampling with Transferable Normalizing Flows | Charlie Tan & Majdi Hassan

Самоспекулятивные замаскированные диффузии | Эндрю Кэмпбелл

Самоспекулятивные замаскированные диффузии | Эндрю Кэмпбелл

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]