ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Автор: Valence Labs

Загружено: 2025-10-20

Просмотров: 641

Описание: Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/multio...

Paper: Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

https://arxiv.org/abs/2410.00844

Abstract: Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced stochastic dynamics from observed snapshots. Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information, allowing them to be learned directly from data. Theoretically, we explore the connections between the RUOT and Schrödinger bridge problem and discuss the key challenges and potential solutions. The effectiveness of our method is demonstrated with a synthetic gene regulatory network, high-dimensional Gaussian Mixture Model, and single-cell RNA-seq data from blood development. Compared with other methods, our approach accurately identifies growth and transition patterns, eliminates false transitions, and constructs the Waddington developmental landscape.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Amortized Sampling with Transferable Normalizing Flows | Charlie Tan & Majdi Hassan

Amortized Sampling with Transferable Normalizing Flows | Charlie Tan & Majdi Hassan

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

How to build a consistency model: Learning flow maps via self-distillation | Nicholas Boffi

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Efficient generation of epitope-targeted de novo antibodies with Germinal

Efficient generation of epitope-targeted de novo antibodies with Germinal

Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Branching Flows: Discrete, Continuous, and Manifold Flow Matching with Splits and Deletions

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Transformers Discover Molecular Structure Without Graph Priors | Tobias Kreiman

Transformers Discover Molecular Structure Without Graph Priors | Tobias Kreiman

Top 30 Machine Learning Interview Questions 2025 | ML Interview Questions And Answers | Intellipaat

Top 30 Machine Learning Interview Questions 2025 | ML Interview Questions And Answers | Intellipaat

11. Introduction to Machine Learning

11. Introduction to Machine Learning

Расшифровка клеточной пластичности посредством глубокого изучения мультиомных сетей регуляции генов

Расшифровка клеточной пластичности посредством глубокого изучения мультиомных сетей регуляции генов

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Protein Hunter: exploiting structure hallucination within diffusion for protein design | Yehlin Cho

Protein Hunter: exploiting structure hallucination within diffusion for protein design | Yehlin Cho

Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models | Giovanni Palla

Scalable Single-Cell Gene Expression Generation with Latent Diffusion Models | Giovanni Palla

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Экспресс-курс RAG для начинающих

Экспресс-курс RAG для начинающих

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Может ли у ИИ появиться сознание? — Семихатов, Анохин

1W-MINDS, Jan 8: Stephen Becker (University of Colorado Boulder), Randomization methods for big-data

1W-MINDS, Jan 8: Stephen Becker (University of Colorado Boulder), Randomization methods for big-data

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Самоспекулятивные замаскированные диффузии | Эндрю Кэмпбелл

Самоспекулятивные замаскированные диффузии | Эндрю Кэмпбелл

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]