ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Convergence of Continuous-Time Stochastic Gradient Descent with Applications to Deep Neural Networks

Автор: Centre de Recerca Matemàtica

Загружено: 2026-01-20

Просмотров: 53

Описание: Convergence of Continuous-Time Stochastic Gradient Descent with Applications to Deep Neural Networks

Speaker: Eulàlia Nualart, Universitat Pompeu Fabra - Barcelona School of Economics

Abstract:
This talk studies a continuous-time approximation of the stochastic gradient descent process for minimizing the population expected loss in learning problems. The main results establish general sufficient conditions for convergence, extending the results of Chatterjee (2022) established for (non-stochastic) gradient descent.

Professor Nualart shows how the main result can be applied to the case of overparametrized neural network training. This is joint work with Gábor Lugosi (UPF).

About the workshop:
This talk was presented at "Mathematical Foundations of Machine Learning: PDEs, Probability, and Dynamics," held at the Centre de Recerca Matemàtica (CRM) in Barcelona, January 7-9, 2026.

About the speaker:
Eulàlia Nualart is a researcher at Universitat Pompeu Fabra and Barcelona School of Economics, working on probability theory and stochastic analysis with applications to machine learning.

More information: https://www.crm.cat/mathematical-foun...

#MachineLearning #Mathematics #AI #DeepLearning #NeuralNetworks #TheoreticalML #DataScience #AppliedMathematics #Research #AcademicTalk #CRM #Barcelona #MathematicalFoundations #ArtificialIntelligence

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Convergence of Continuous-Time Stochastic Gradient Descent with Applications to Deep Neural Networks

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

A Multiscale Analysis of Mean-Field Transformer Models | Andrea Agazzi (University of Bern)

A Multiscale Analysis of Mean-Field Transformer Models | Andrea Agazzi (University of Bern)

Machine Learning from a Pure Mathematician's Viewpoint | Roberto Rubio (UAB)

Machine Learning from a Pure Mathematician's Viewpoint | Roberto Rubio (UAB)

Deep Learning with Label Noise - Kevin McGuinness - UPC TelecomBCN Barcelona 2019

Deep Learning with Label Noise - Kevin McGuinness - UPC TelecomBCN Barcelona 2019

Generalization Bound via Regret Analysis | Gábor Lugosi (ICREA-UPF)

Generalization Bound via Regret Analysis | Gábor Lugosi (ICREA-UPF)

Transformers as Interacting Particle Systems | Borjan Geshkovski (INRIA)

Transformers as Interacting Particle Systems | Borjan Geshkovski (INRIA)

ICN2 Lecture Prof. Omar M. Yaghi: Reticular Chemistry

ICN2 Lecture Prof. Omar M. Yaghi: Reticular Chemistry

Mają panele, pompę ciepła i magazyn energii. Grzeją się przy kominku

Mają panele, pompę ciepła i magazyn energii. Grzeją się przy kominku

Assembly and Annotation of Reference Genomes

Assembly and Annotation of Reference Genomes

Доктор Джун Ху — региональный лауреат премии Блаватника 2017 года в области физических наук и инж...

Доктор Джун Ху — региональный лауреат премии Блаватника 2017 года в области физических наук и инж...

What Was the Industrial Revolution? - Robert E. Lucas

What Was the Industrial Revolution? - Robert E. Lucas

KONTRA #21 Rymanowski, Budzisz, gen. Komornicki: Świat według Donalda

KONTRA #21 Rymanowski, Budzisz, gen. Komornicki: Świat według Donalda

Moment Guided Diffusion for Maximum Entropy Generation | Stéphane Mallat (Collège de France & ENS)

Moment Guided Diffusion for Maximum Entropy Generation | Stéphane Mallat (Collège de France & ENS)

3D Reconstruction with Deep Learning - Eduard Ramon - UPC TelecomBCN Barcelona 2019

3D Reconstruction with Deep Learning - Eduard Ramon - UPC TelecomBCN Barcelona 2019

T. Spredeman vs T. Yore - Men Singles - Last 16 - ITSF World Series Tornado 2025

T. Spredeman vs T. Yore - Men Singles - Last 16 - ITSF World Series Tornado 2025

Generalization in Attention-Based Models | Lenka Zdeborová (EPFL)

Generalization in Attention-Based Models | Lenka Zdeborová (EPFL)

Gene Grossman (Princeton) - Barcelona GSE Summer Forum 2019

Gene Grossman (Princeton) - Barcelona GSE Summer Forum 2019

Diffusion Flows and Optimal Transport in Machine Learning | Gabriel Peyré (CNRS & ENS)

Diffusion Flows and Optimal Transport in Machine Learning | Gabriel Peyré (CNRS & ENS)

The Role of Expectations in Economic Theory

The Role of Expectations in Economic Theory

Beyond Diffusions with Stochastic Interpolants | Eric Vanden-Eijnden (Courant Institute – NYU)

Beyond Diffusions with Stochastic Interpolants | Eric Vanden-Eijnden (Courant Institute – NYU)

Sampling the Hardest Simple Random Variables | Jaume de Dios Pont (ETH Zurich)

Sampling the Hardest Simple Random Variables | Jaume de Dios Pont (ETH Zurich)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]