ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Robert Meyer - Analysing user comments with Doc2Vec and Machine Learning classification

Автор: PyData

Загружено: 2017-07-26

Просмотров: 43472

Описание: Description
I used the Doc2Vec framework to analyze user comments on German online news articles and uncovered some interesting relations among the data. Furthermore, I fed the resulting Doc2Vec document embeddings as inputs to a supervised machine learning classifier. Can we determine for a particular user comment from which news site it originated?

Abstract
Doc2Vec is a nice neural network framework for text analysis. The machine learning technique computes so called document and word embeddings, i.e. vector representations of documents and words. These representations can be used to uncover semantic relations. For instance, Doc2Vec may learn that the word "King" is similar to "Queen" but less so to "Database".

I used the Doc2Vec framework to analyze user comments on German online news articles and uncovered some interesting relations among the data. Furthermore, I fed the resulting Doc2Vec document embeddings as inputs to a supervised machine learning classifier. Accordingly, given a particular comment, can we determine from which news site it originated? Are there patterns among user comments? Can we identify stereotypical comments for different news sites? Besides presenting the results of my experiments, I will give a short introduction to Doc2Vec.

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Robert Meyer - Analysing user comments with Doc2Vec and Machine Learning classification

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

James Powell: So you want to be a Python expert? | PyData Seattle 2017

James Powell: So you want to be a Python expert? | PyData Seattle 2017

Applying the four step

Applying the four step "Embed, Encode, Attend, Predict" framework to predict document similarity

Matti Lyra - Evaluating Topic Models

Matti Lyra - Evaluating Topic Models

Простые глубокие нейронные сети для классификации текста

Простые глубокие нейронные сети для классификации текста

Word Embedding Explained and Visualized - word2vec and wevi

Word Embedding Explained and Visualized - word2vec and wevi

Natural language processing (for the impatient) - Sebastian Dziadzio

Natural language processing (for the impatient) - Sebastian Dziadzio

Building new NLP solutions with spaCy and Prodigy - Matthew Honnibal

Building new NLP solutions with spaCy and Prodigy - Matthew Honnibal

12.1: What is word2vec? - Programming with Text

12.1: What is word2vec? - Programming with Text

Lev Konstantinovskiy - Text similiarity with the next generation of word embeddings in Gensim

Lev Konstantinovskiy - Text similiarity with the next generation of word embeddings in Gensim

LDA/Doc2Vec example with PCA/LDAvis visualization

LDA/Doc2Vec example with PCA/LDAvis visualization

Автоматизированное извлечение и отбор признаков для сложных задач прогнозирования временных рядов.

Автоматизированное извлечение и отбор признаков для сложных задач прогнозирования временных рядов.

Word2Vec — Skipgram и CBOW

Word2Vec — Skipgram и CBOW

Bhargav Srinivasa Desikan - Topic Modelling (and more) with NLP framework Gensim

Bhargav Srinivasa Desikan - Topic Modelling (and more) with NLP framework Gensim

Lev Konstantinovskiy - Next generation of word embeddings in Gensim

Lev Konstantinovskiy - Next generation of word embeddings in Gensim

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

Latent Dirichlet Allocation (Part 1 of 2)

Latent Dirichlet Allocation (Part 1 of 2)

Обработка естественного языка (часть 5): тематическое моделирование с использованием латентного р...

Обработка естественного языка (часть 5): тематическое моделирование с использованием латентного р...

Lev Konstantinovskiy - Word Embeddings for fun and profit in Gensim

Lev Konstantinovskiy - Word Embeddings for fun and profit in Gensim

ChatGPT in a kids robot does exactly what experts warned.

ChatGPT in a kids robot does exactly what experts warned.

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]