ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Keynote: Scientific Machine Learning Through Symbolic Numerics | Chris Rackauckas | JuliaCon 2023

Автор: The Julia Programming Language

Загружено: 2023-08-29

Просмотров: 4377

Описание: Dr. Rackauckas is a Research Affiliate and Co-PI of the Julia Lab at the Massachusetts Institute of Technology, VP of Modeling and Simulation at JuliaHub and Creator / Lead Developer of JuliaSim. He's also the Director of Scientific Research at Pumas-AI and Creator / Lead Developer of Pumas, and Lead Developer of the SciML Open Source Software Organization.

Dr. Rackauckas's research and software is focused on Scientific Machine Learning (SciML): the integration of domain models with artificial intelligence techniques like machine learning. By utilizing the structured scientific (differential equation) models together with the unstructured data-driven models of machine learning, our simulators can be accelerated, our science can better approximate the true systems, all while enjoying the robustness and explainability of mechanistic dynamical models.

Abstract:
The combination of scientific models into deep learning structures, commonly referred to as scientific machine learning (SciML), has made great strides in the last few years in incorporating models such as ODEs and PDEs into deep learning through differentiable simulation. Such SciML methods have been gaining steam due to accelerating the development of high-fidelity models for improving industrial simulation and design. However, many of the methods from the machine learning world lack the robustness required for scaling to industrial tasks. What needs to change about SciML in order to allow for methods which can guarantee accuracy and quantify uncertainty? In this talk we will go through the numerics of the robustness in building and training SciML models. Numerical robustness of algorithms for handling neural networks with stiff dynamics, continuous machine learning methods with certifiably globally-optimal training, alternative loss functions to mitigating local minima, integration of Bayesian estimation with model discovery, and tools for validating the correctness of surrogate models will be discussed to demonstrate a next generation of SciML methods for industrial use. In particular, it will be shown how symbolic-numerics is integrating the compiler into the modeling process as a method to improve numerical robustness, blurring the lines between computer science and numerical analysis. Demonstrations of these methods in applications such as two-phase flow HVAC systems, modeling of sensors in Formula One cars, and lithium-ion battery packs will be used to showcase the improved robustness of these approaches over standard (scientific) machine learning.

Time Stamps:
00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/JuliaCommunity/You...

Interested in improving the auto generated captions? Get involved here: https://github.com/JuliaCommunity/You...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Keynote: Scientific Machine Learning Through Symbolic Numerics | Chris Rackauckas | JuliaCon 2023

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

DyVE: A Framework for Value Dynamics | Bima, Ritter, Wu | JuliaCon 2023

DyVE: A Framework for Value Dynamics | Bima, Ritter, Wu | JuliaCon 2023

Automatic Differentiation and SciML: What Can Go Wrong | Chris Rackauckas | JuliaHEP 2023

Automatic Differentiation and SciML: What Can Go Wrong | Chris Rackauckas | JuliaHEP 2023

Doing Scientific Machine Learning (SciML) With Julia | Workshop | JuliaCon 2020

Doing Scientific Machine Learning (SciML) With Julia | Workshop | JuliaCon 2020

Julia for Engineers Part 1 Intro to Julia and ModelingToolkit

Julia for Engineers Part 1 Intro to Julia and ModelingToolkit

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Causal vs Acausal Modeling By Example: Why Julia ModelingToolkit.jl Scales (Chris Rackauckas, SciML)

Causal vs Acausal Modeling By Example: Why Julia ModelingToolkit.jl Scales (Chris Rackauckas, SciML)

Scientific Machine Learning and Stiffness - MIT Institute for AI and Fundamental Interactions IAIFI

Scientific Machine Learning and Stiffness - MIT Institute for AI and Fundamental Interactions IAIFI

Chris Rackauckas: Accurate and Efficient Physics-Informed Learning Through Differentiable Simulation

Chris Rackauckas: Accurate and Efficient Physics-Informed Learning Through Differentiable Simulation

Getting Started with Julia and Machine Learning | Anthony Blaom, Samuel | JuliaCon 2022

Getting Started with Julia and Machine Learning | Anthony Blaom, Samuel | JuliaCon 2022

Ask us anything,  SciML edition: Chris Rackauckas and Yingbo Ma

Ask us anything, SciML edition: Chris Rackauckas and Yingbo Ma

Я в опасности

Я в опасности

Intro to Julia Programming Language with Detroit Tech Watch

Intro to Julia Programming Language with Detroit Tech Watch

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

SciMLCon 2022: Scientific Machine Learning Open Source Software

SciMLCon 2022: Scientific Machine Learning Open Source Software

Куда дрейфует Латынина: фактчек недавних заявлений

Куда дрейфует Латынина: фактчек недавних заявлений

Chris Lattner on Julia programming language | Lex Fridman Podcast Clips

Chris Lattner on Julia programming language | Lex Fridman Podcast Clips

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

Алгоритмы на Python 3. Лекция №1

Алгоритмы на Python 3. Лекция №1

Models as Code: Differentiable Programming with Zygote

Models as Code: Differentiable Programming with Zygote

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]