ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

[SAIF 2020] Day 1: Towards Discovering Casual Representations - Yoshua Bengio | Samsung

Автор: Samsung

Загружено: 2020-11-10

Просмотров: 9759

Описание: Up to now deep learning has focused on learning representations which are useful in many applications but differ from the kind of high-level representations humans can communicate with natural language and capture semantic (verbalizable) variables and their causal dependencies. Capturing causal structure is important for many reasons: (a) it allows an agent to take appropriate decisions (interventions) by having a good causal model of its effects, (b) it can lead to robustness with respect to changes in distribution (a major current limitation of state-of-the-art machine learning), and (c) it makes it easier to understand natural language (which refers to such causal concepts, the semantic variables named with words) and thus interact more meaningfully with humans. Whereas causality research has focused on inference (like how strong is the causal effect of A on B?) and to a lesser extent on causal discovery (is A a direct cause of B?), an important open question to which deep learning researchers can contribute is that of discovering causal representations, i.e., transformations from low-level sensory data to high-level representations of causal variables, where the high-level variables are not always labeled by humans. This must necessarily be done at the same time as one learns the structure of the causal graph which links these variables since both are generally unknown. This talk will report on early efforts towards these objectives, as part of a larger research programme aimed at expanding deep learning from system 1 (unconscious) processing to system 2 (conscious-level) processing of semantic variables.

#SAIF #SamsungAIForum

For more info, visit our page:
#SAIT(Samsung Advanced Institute of Technology): http://smsng.co/sait

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[SAIF 2020] Day 1: Towards Discovering Casual Representations - Yoshua Bengio | Samsung

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

[SAIF 2020] Day 1: Energy-Based Models for Self-Supervised Learning - Yann LeCun | Samsung

[SAIF 2020] Day 1: Energy-Based Models for Self-Supervised Learning - Yann LeCun | Samsung

Yoshua Bengio Guest Talk - Towards Causal Representation Learning

Yoshua Bengio Guest Talk - Towards Causal Representation Learning

Keynote: Judea Pearl - The New Science of Cause and Effect

Keynote: Judea Pearl - The New Science of Cause and Effect

Why America Hates Change?

Why America Hates Change?

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев

Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Yoshua Bengio - Towards Neural Nets for Conscious Processing and Causal Reasoning

Yoshua Bengio - Towards Neural Nets for Conscious Processing and Causal Reasoning

AI DEBATE : Yoshua Bengio | Gary Marcus

AI DEBATE : Yoshua Bengio | Gary Marcus

We still don't understand magnetism

We still don't understand magnetism

#063 - Prof. YOSHUA BENGIO - GFlowNets, Consciousness & Causality

#063 - Prof. YOSHUA BENGIO - GFlowNets, Consciousness & Causality

We Are The Art | Brandon Sanderson’s Keynote Speech

We Are The Art | Brandon Sanderson’s Keynote Speech

Yoshua Bengio: Deep Learning Cognition | Full Keynote - AI in 2020 & Beyond

Yoshua Bengio: Deep Learning Cognition | Full Keynote - AI in 2020 & Beyond

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Yann Lecun | Objective-Driven AI: Towards AI systems that can learn, remember, reason, and plan

Yann Lecun | Objective-Driven AI: Towards AI systems that can learn, remember, reason, and plan

Когнитивные искажения и ошибки восприятия. Лекция в Ереване. День 1

Когнитивные искажения и ошибки восприятия. Лекция в Ереване. День 1

Визуализация гравитации

Визуализация гравитации

[SAIF 2019] Day 1: Three Flavors of Neural Sequence Generation - Kyunghyun Cho | Samsung

[SAIF 2019] Day 1: Three Flavors of Neural Sequence Generation - Kyunghyun Cho | Samsung

Yoshua Bengio: Deep Learning | Lex Fridman Podcast #4

Yoshua Bengio: Deep Learning | Lex Fridman Podcast #4

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]