ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Keynote: Judea Pearl - The New Science of Cause and Effect

Автор: PyData

Загружено: 2018-11-29

Просмотров: 64848

Описание: PyData LA 2018

The talk will explain why data science should embrace an engine for processing cause-effect relationships. I will describe the structure of this engine, how it has revolutionized the data-intensive sciences, and how it is about to revolutions machine learning.

---

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

0:00 Speaker Introduction
1:00 Introduction
1:18 Talk Proverb
2:13 Talk Outline
5:11 Causal Models and the Cognitive Revolution
10:50 Typical Causal Questions & The Limitation of Standard Grammar of Science
18:15 The Ladder of Causation (3 Level Hierarchy)
26:36 Simpson's Paradox
31:00 Explainability Deep-Learning Style
34:26 Distinguish Seeing from Doing
36:19 The Two Fundamental Laws of Causal Inference
38:15 Reading Independencies
40:02 Structural Causal Model (SCM) Inference Engine
42:33 The Seven Pillars of Causal Wisdom
44:44 Pillar 5: External Validity and Sample Selection Bias
45:51 Pillar 5: The Problem in Real Life
47:06 Pillar 5: The Problem in Mathematics
49:16 Conclusion
51:56 Q&A 1: Opinion on Natural Experiments to Discover Causal Connections in Data
57:38 Q&A 2: Opinion on the Popularization of Statistics in News Media
1:01:30 Q&A 3

S/o to https://github.com/trfore for the video timestamps!

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Keynote: Judea Pearl - The New Science of Cause and Effect

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Peter Wang - State of the Py, 2015 Keynote

Peter Wang - State of the Py, 2015 Keynote

Judea Pearl - The Science of Cause and Effect, from Theoretical Foundations to Personalized (...)

Judea Pearl - The Science of Cause and Effect, from Theoretical Foundations to Personalized (...)

Judea Pearl -- The Foundations of Causal Inference  [The Book of WHY]

Judea Pearl -- The Foundations of Causal Inference [The Book of WHY]

CDSM22 Keynote Judea Pearl

CDSM22 Keynote Judea Pearl

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

FDAP Stack: High-Performance Data Architecture based on Apache Arrow

FDAP Stack: High-Performance Data Architecture based on Apache Arrow

PyData Tel Aviv Meetup: Introduction to Causal Inference in Time Series Data - Shay Palachy

PyData Tel Aviv Meetup: Introduction to Causal Inference in Time Series Data - Shay Palachy

Лучший документальный фильм про создание ИИ

Лучший документальный фильм про создание ИИ

Naomi Saphra (Keynote) - Accessible Means Hackable | PyData Fest Amsterdam 2020

Naomi Saphra (Keynote) - Accessible Means Hackable | PyData Fest Amsterdam 2020

Susan Athey: Counterfactual Inference (NeurIPS 2018 Tutorial)

Susan Athey: Counterfactual Inference (NeurIPS 2018 Tutorial)

Спокойная классика | Бах, Бетховен, Шопен, Дебюсси, Лист, Мендельсон, Моцарт, Сати, Шуман

Спокойная классика | Бах, Бетховен, Шопен, Дебюсси, Лист, Мендельсон, Моцарт, Сати, Шуман

Causal Inference in R

Causal Inference in R

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Lecture 6: Causality (Adèle Ribeiro)

Lecture 6: Causality (Adèle Ribeiro)

Foundations of causal inference and its impacts on machine learning webinar

Foundations of causal inference and its impacts on machine learning webinar

Keynote - Fairness and Diversity in Online Social Systems - Elisa Celis

Keynote - Fairness and Diversity in Online Social Systems - Elisa Celis

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]