The Archimedean Property | Real Analysis | Lecture 5
Автор: Big Epsilon
Загружено: 2022-10-08
Просмотров: 648
Описание:
Proof of the Archimedean Property of the natural and real numbers. Proof that the set of natural numbers is not bounded from above. Proof of the existence of a maximal element in a bounded subset of the integers.
00:00 Introduction
00:31 If a set A \subset Z has a supremum, then sup A belongs to A. Proof.
08:45 The Archimedean Property with proof.
16:56 Example. The set of natural numbers is not bounded from above.
Related lectures:
Lecture 4 | Real Analysis | Epsilon Criterion for Supremum and Infimum | Examples of Sup and Inf
• The Epsilon Criterion for Supremum and Inf...
Lecture 3 | Real Analysis | Axioms of Real Numbers | Part 3: The Completeness Axiom | Sup and Inf
• Axioms of Real Numbers | Part 3: The Compl...
All lectures in Real Analysis:
Real ANALYSIS -- Modern ANALYSIS -- Advanced CALCULUS
• Real ANALYSIS -- Modern ANALYSIS -- Advanc...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: