ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

IROS 2022 - T-PRM: Temporal Probabilistic Roadmap for Path Planning in Dynamic Environments

Автор: V4RL-team

Загружено: 2022-09-25

Просмотров: 1319

Описание: Video of the presentation at IROS 2022 of the paper "T-PRM: Temporal Probabilistic Roadmap for Path Planning in Dynamic Environments" by Matthias Hüppi, Luca Bartolomei, Ruben Mascaro and Margarita Chli

Paper Link - https://www.research-collection.ethz....
Code Link - https://github.com/VIS4ROB-lab/t_prm

Abstract - Sampling-based motion planners are widely used in robotics due to their simplicity, flexibility and computational efficiency. However, in their most basic form, these algorithms operate under the assumption of static scenes and lack the ability to avoid collisions with dynamic (i.e. moving) obstacles. This raises safety concerns, limiting the range of possible applications of mobile robots in the real world. Motivated by these challenges, in this work we present Temporal-PRM, a novel sampling-based path-planning algorithm that performs obstacle avoidance in dynamic environments. The proposed approach extends the original Probabilistic Roadmap (PRM) with the notion of time, generating an augmented graph-like structure that can be efficiently queried using a time-aware variant of the A* search algorithm, also introduced in this paper. Our design maintains all the properties of PRM, such as the ability to perform multiple queries and to find smooth paths, while circumventing its downside by enabling collision avoidance in highly dynamic scenes with a minor increase in the computational cost. Through a series of challenging experiments in highly cluttered and dynamic environments, we demonstrate that the proposed path planner outperforms other state-of-the-art sampling-based solvers. Moreover, we show that our algorithm can run onboard a flying robot, performing obstacle avoidance in real time.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
IROS 2022 - T-PRM: Temporal Probabilistic Roadmap for Path Planning in Dynamic Environments

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Path Planning with A* and RRT | Autonomous Navigation, Part 4

Path Planning with A* and RRT | Autonomous Navigation, Part 4

IROS 2022 - Continuous-Time Stereo-Inertial Odometry

IROS 2022 - Continuous-Time Stereo-Inertial Odometry

IROS 2022- Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction

IROS 2022- Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm

PRM: Probabilistic Roadmap Method in 3D and with 7-DOF robot arm

Leveraging Stereo-Camera Data for Real-Time Dynamic Obstacle Detection and Tracking

Leveraging Stereo-Camera Data for Real-Time Dynamic Obstacle Detection and Tracking

IROS 2023 Presentation - Decentralised Multi-Robot Exploration using Monte Carlo Tree Search

IROS 2023 Presentation - Decentralised Multi-Robot Exploration using Monte Carlo Tree Search

Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning

Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning

[ECCV 2022] LaMAR: Benchmarking Localization and Mapping for Augmented Reality

[ECCV 2022] LaMAR: Benchmarking Localization and Mapping for Augmented Reality

Introduction to Motion Planning Algorithms | Motion Planning with the RRT Algorithm, Part 1

Introduction to Motion Planning Algorithms | Motion Planning with the RRT Algorithm, Part 1

Рабочая музыка для глубокой концентрации и сверхэффективности

Рабочая музыка для глубокой концентрации и сверхэффективности

Event-based Vision for Autonomous High-Speed Robotics

Event-based Vision for Autonomous High-Speed Robotics

Advanced Motion Planning: FMT*, Informed RRT*, BIT*, and RABIT* | An OMPL Tutorial with Examples

Advanced Motion Planning: FMT*, Informed RRT*, BIT*, and RABIT* | An OMPL Tutorial with Examples

Sweep-Your-Map: Efficient Coverage Planning for Aerial Teams in Large-Scale Environments

Sweep-Your-Map: Efficient Coverage Planning for Aerial Teams in Large-Scale Environments

Карта робототехники, которую должен увидеть каждый инженер.

Карта робототехники, которую должен увидеть каждый инженер.

Motion Planning Algorithms (RRT, RRT*, PRM) - [MIT 6.881 Final Project]

Motion Planning Algorithms (RRT, RRT*, PRM) - [MIT 6.881 Final Project]

Изучите оптимизацию роя частиц (PSO) за 20 минут

Изучите оптимизацию роя частиц (PSO) за 20 минут

Как электростатические двигатели нарушают все правила

Как электростатические двигатели нарушают все правила

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

Using Nav2 to Find a Shelf and Carry it Away - ROS2| Steven Murray | ROS Developers Day 2022

Using Nav2 to Find a Shelf and Carry it Away - ROS2| Steven Murray | ROS Developers Day 2022

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]