ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning

Автор: UZH Robotics and Perception Group

Загружено: 2020-08-17

Просмотров: 5854

Описание: Considering visual localization accuracy at the planning time gives preference to robot motion that can be better localized and thus has the potential of improving vision-based navigation, especially in visually degraded environments. To integrate the knowledge about localization accuracy in motion planning algorithms, a central task is to quantify the amount of information that an image taken at a 6 degree-of-freedom pose brings for localization, which is often represented by the Fisher information. However, computing the Fisher information from a set of sparse landmarks (i.e., a point cloud), which is the most common map for visual localization, is inefficient. This approach scales linearly with the number of landmarks in the environment and does not allow the reuse of the computed Fisher information. To overcome these drawbacks, we propose the first dedicated map representation for evaluating the Fisher information of 6 degree-of-freedom visual localization for perception-aware motion planning. By formulating the Fisher information and sensor visibility carefully, we are able to separate the rotational invariant component from the Fisher information and store it in a voxel grid, namely the Fisher information field. This step only needs to be performed once for a known environment. The Fisher information for arbitrary poses can then be computed from the field in constant time, eliminating the need of costly iterating all the 3D landmarks at the planning time. Experimental results show that the proposed Fisher information field can be applied to different motion planning algorithms and is at least one order-of-magnitude faster than using the point cloud directly. Moreover, the proposed map representation is differentiable, resulting in better performance than the point cloud when used in trajectory optimization algorithms.

0:00 Intro and main idea
0:33 Experiments overview
0:40 Simulation validation
1:16 Motion planning: experiment setup
1:30 Motion planning: RRT*
2:13 Motion planning: trajectory optimization
3:21 Building FIF incrementally from VIO output

Reference:
Zichao Zhang, Davide Scaramuzza
Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning. arXiv preprint 2020.
PDF: http://rpg.ifi.uzh.ch/docs/Arxiv20_Zh...
Code: https://github.com/uzh-rpg/rpg_inform...

Our research on active vision and exploration: http://rpg.ifi.uzh.ch/research_active...
Our research on visual-inertial odometry and SLAM: http://rpg.ifi.uzh.ch/research_vo.html
More about our research: http://rpg.ifi.uzh.ch/publications.html

Affiliations: The authors are with the Robotics and Perception Group, Dep. of informatics, University of Zurich, and Dep. of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
http://rpg.ifi.uzh.ch/

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Path Planning with A* and RRT | Autonomous Navigation, Part 4

Path Planning with A* and RRT | Autonomous Navigation, Part 4

VIMO: Одновременная одометрия и оценка силы на основе визуальной инерциальной модели (RSS 2019)

VIMO: Одновременная одометрия и оценка силы на основе визуальной инерциальной модели (RSS 2019)

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

Autonomous Navigation

Autonomous Navigation

Understanding SLAM Using Pose Graph Optimization | Autonomous Navigation, Part 3

Understanding SLAM Using Pose Graph Optimization | Autonomous Navigation, Part 3

GPS-Denied, Anti-Jam Autonomous DIY Drone: How It Works

GPS-Denied, Anti-Jam Autonomous DIY Drone: How It Works

XPENG IRON - China's MOST HUMAN Robot Ever Built!

XPENG IRON - China's MOST HUMAN Robot Ever Built!

Visual and LIDAR based SLAM with ROS using Bittle and Raspberry Pi

Visual and LIDAR based SLAM with ROS using Bittle and Raspberry Pi

ICRA2020 Pitch Video: Motion Primitives-based Path Planning for Fast and Agile Exploration

ICRA2020 Pitch Video: Motion Primitives-based Path Planning for Fast and Agile Exploration

MIT SPARK meetings

MIT SPARK meetings

Изучение передвижения четвероногих животных с использованием дифференцируемого моделирования (COR...

Изучение передвижения четвероногих животных с использованием дифференцируемого моделирования (COR...

Сравнительный анализ алгоритмов монокулярной визуально-инерциальной одометрии для летающих роботов

Сравнительный анализ алгоритмов монокулярной визуально-инерциальной одометрии для летающих роботов

What Is Autonomous Navigation? | Autonomous Navigation, Part 1

What Is Autonomous Navigation? | Autonomous Navigation, Part 1

ECC2024 - Event Based Vision for Control

ECC2024 - Event Based Vision for Control

PULP-DroNet -- A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

PULP-DroNet -- A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

Metric-Semantic SLAM with Kimera: A Hands On Tutorial

Metric-Semantic SLAM with Kimera: A Hands On Tutorial

VarCity - The Video - semantic and dynamic city modelling from images

VarCity - The Video - semantic and dynamic city modelling from images

PolyFly: Polytopic Planning for Collision-Free Aerial Transportation

PolyFly: Polytopic Planning for Collision-Free Aerial Transportation

Agile Aerial Autonomy: Planning and Control (PhD Defense of Philipp Foehn)

Agile Aerial Autonomy: Planning and Control (PhD Defense of Philipp Foehn)

This is why I believe that the future already exists

This is why I believe that the future already exists

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]