ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

[Swami Gurumurthy Ph.D. Defense] Algorithms and Architectures for Improving Optimization Layers

Автор: CMU Robotic Exploration Lab

Загружено: 2025-09-18

Просмотров: 507

Описание: Abstract:
Many real-world challenges, from robotic control to resource management, can be effectively formulated as optimization problems. Recent advancements have focused on incorporating these optimization problems as layers within deep learning pipelines, enabling the explicit inclusion of auxiliary constraints or cost functions, which is crucial for applications such as enforcing physical laws, ensuring safety constraints, and optimizing complex objectives. However, these layers introduce several challenges, including inference inefficiencies, unstable training dynamics, modeling inaccuracies, and representational inefficiencies, which need to be addressed to fully harness their potential.

We systematically investigate these challenges and propose novel numerical methods and architectural solutions that mitigate them, making optimization layers more efficient and effective within deep learning pipelines. Our contributions include methods for enhancing computational efficiency by exploiting the iterative nature of optimization problems, tackling issues of gradient bias and variance in high dimensional problems by exploiting parallelism and network learnt priors about the system, improving sample efficiency in reinforcement learning using approximate simulators, and mitigating representational problems with using complicated constrained optimization layers by creating a tight feedback loop between the optimizer state and the network outputs in domains like robotic control and mechanism design with LLMs. We demonstrate these contributions across different applications, ranging from input-optimization problems, 3D pose estimation and reconstruction, differentiable model predictive control and reinforcement learning problems. We also present a new approach for visual-inertial navigation in nanosatellites, highlighting the practical benefits of integrating optimization layers in challenging real-world scenarios.

Together, these contributions advance our understanding of the complexities and opportunities in integrating optimization layers within deep learning models, offering new frameworks and insights that improve efficiency, stability, and generalizability across a wide range of complex tasks.

Thesis Committee Members:
Zico Kolter, Co-chair
Zac Manchester, Co-chair
Geoffrey Gordon
Max Simchowitz
Vladlen Koltun, Apple

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[Swami Gurumurthy Ph.D. Defense] Algorithms and Architectures for Improving Optimization Layers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

M.Fogelson Ph.D. Defense | Advances in Design, Optimization, and Simulation of Linkage-Based Systems

M.Fogelson Ph.D. Defense | Advances in Design, Optimization, and Simulation of Linkage-Based Systems

[Tutorial] Optimization, Optimal Control, Trajectory Optimization, and Splines

[Tutorial] Optimization, Optimal Control, Trajectory Optimization, and Splines

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

TCOptRob Seminar: Semidefinite Relaxations for Robot Perception and Control by Heng Yang of Harvard

TCOptRob Seminar: Semidefinite Relaxations for Robot Perception and Control by Heng Yang of Harvard

I never intuitively understood Tensors...until now!

I never intuitively understood Tensors...until now!

ДЕНЬ 1410: МАДУРО НА КИЧЕ @Kurbanova_LIVE

ДЕНЬ 1410: МАДУРО НА КИЧЕ @Kurbanova_LIVE

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

[John Zhang MSR Talk] Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

[John Zhang MSR Talk] Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

The Ridiculous Engineering Of The World's Most Important Machine

The Ridiculous Engineering Of The World's Most Important Machine

Физиогномический анализ: Сэм Альтман (OpenAI) | Чтение по лицу

Физиогномический анализ: Сэм Альтман (OpenAI) | Чтение по лицу

Почему Азовское море — самое опасное в мире

Почему Азовское море — самое опасное в мире

DeepSeek Just CRUSHED Big Tech Again: MHC - Better Way To Do AI

DeepSeek Just CRUSHED Big Tech Again: MHC - Better Way To Do AI

Melanie Zeilinger:

Melanie Zeilinger: "Learning-based Model Predictive Control - Towards Safe Learning in Control"

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Reinforcement Learning Series: Overview of Methods

Reinforcement Learning Series: Overview of Methods

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

ESP32: распознавание речи нейросетью (TensorFlow Lite)

ESP32: распознавание речи нейросетью (TensorFlow Lite)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]