ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

[Swami Gurumurthy Ph.D. Defense] Algorithms and Architectures for Improving Optimization Layers

Автор: CMU Robotic Exploration Lab

Загружено: 2025-09-18

Просмотров: 517

Описание: Abstract:
Many real-world challenges, from robotic control to resource management, can be effectively formulated as optimization problems. Recent advancements have focused on incorporating these optimization problems as layers within deep learning pipelines, enabling the explicit inclusion of auxiliary constraints or cost functions, which is crucial for applications such as enforcing physical laws, ensuring safety constraints, and optimizing complex objectives. However, these layers introduce several challenges, including inference inefficiencies, unstable training dynamics, modeling inaccuracies, and representational inefficiencies, which need to be addressed to fully harness their potential.

We systematically investigate these challenges and propose novel numerical methods and architectural solutions that mitigate them, making optimization layers more efficient and effective within deep learning pipelines. Our contributions include methods for enhancing computational efficiency by exploiting the iterative nature of optimization problems, tackling issues of gradient bias and variance in high dimensional problems by exploiting parallelism and network learnt priors about the system, improving sample efficiency in reinforcement learning using approximate simulators, and mitigating representational problems with using complicated constrained optimization layers by creating a tight feedback loop between the optimizer state and the network outputs in domains like robotic control and mechanism design with LLMs. We demonstrate these contributions across different applications, ranging from input-optimization problems, 3D pose estimation and reconstruction, differentiable model predictive control and reinforcement learning problems. We also present a new approach for visual-inertial navigation in nanosatellites, highlighting the practical benefits of integrating optimization layers in challenging real-world scenarios.

Together, these contributions advance our understanding of the complexities and opportunities in integrating optimization layers within deep learning models, offering new frameworks and insights that improve efficiency, stability, and generalizability across a wide range of complex tasks.

Thesis Committee Members:
Zico Kolter, Co-chair
Zac Manchester, Co-chair
Geoffrey Gordon
Max Simchowitz
Vladlen Koltun, Apple

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[Swami Gurumurthy Ph.D. Defense] Algorithms and Architectures for Improving Optimization Layers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Optimal Control (CMU 16-745) 2025 Lecture 20: How to Walk

Optimal Control (CMU 16-745) 2025 Lecture 20: How to Walk

Код работает в 100 раз медленнее из-за ложного разделения ресурсов.

Код работает в 100 раз медленнее из-за ложного разделения ресурсов.

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

You Need to Be Bored. Here's Why.

You Need to Be Bored. Here's Why.

M.Fogelson Ph.D. Defense | Advances in Design, Optimization, and Simulation of Linkage-Based Systems

M.Fogelson Ph.D. Defense | Advances in Design, Optimization, and Simulation of Linkage-Based Systems

Presentations

Presentations

I never intuitively understood Tensors...until now!

I never intuitively understood Tensors...until now!

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

Зачать от двух пап, родить от ИИ и никогда не состариться. Илья Колмановский о сенсациях года

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

AlphaFold - The Most Useful Thing AI Has Ever Done

AlphaFold - The Most Useful Thing AI Has Ever Done

Nvidia CEO Jensen Huang talks about his company's latest innovations at CES 2026

Nvidia CEO Jensen Huang talks about his company's latest innovations at CES 2026

Optimal Control (CMU 16-745) 2024 Lecture 8: The Linear Quadratic Regulator Three Ways

Optimal Control (CMU 16-745) 2024 Lecture 8: The Linear Quadratic Regulator Three Ways

[John Zhang MSR Talk] Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

[John Zhang MSR Talk] Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

Optimal Control (CMU 16-745) 2025 Lecture 24: Data-Driven Control and Behavior Cloning

Optimal Control (CMU 16-745) 2025 Lecture 24: Data-Driven Control and Behavior Cloning

What was Euclid really doing? | Guest video by Ben Syversen

What was Euclid really doing? | Guest video by Ben Syversen

Почему Андрей Карпати чувствует себя

Почему Андрей Карпати чувствует себя "отстающим" (и что это значит для вашей карьеры)

Mongo DB v1 4k+ Boot Dev

Mongo DB v1 4k+ Boot Dev

Optimal Control (CMU 16-745) 2024 Lecture 13: Direct Trajectory Optimization

Optimal Control (CMU 16-745) 2024 Lecture 13: Direct Trajectory Optimization

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]