ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Centroid of composite areas: Example

Автор: Civil Times

Загружено: 2023-04-19

Просмотров: 8219

Описание: In this video tutorial, we walk through calculating a composite shape's centroid (X̄ and Ȳ coordinates). This fundamental concept in engineering mechanics is essential for students and professionals working with complex geometries.
We break down the problem-solving approach into the following key steps:

1) Dividing the composite shape into simpler, known shapes (rectangles, triangles, semicircles)
2) Calculating the area of each individual shape, assigning negative areas for hollow or subtracted sections
3) Determining the centroid location (X and Y) for each shape using geometric properties and centroid formulas
4) Tabulating the results and calculating the centroid of the composite shape using the formulas: X̄ = Σ(X̄ × Area) ÷ ΣArea and Ȳ = Σ(Ȳ × Area) ÷ ΣArea

By following along with this video, you'll gain a clear understanding of how to approach centroid calculations for composite shapes, breaking down the problem into manageable steps. Perfect for students in engineering mechanics courses and professionals who need to refresh their knowledge of this essential concept.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Centroid of composite areas: Example

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Moment of Inertia of  composite bodies

Moment of Inertia of composite bodies

Statics - Centroids of Composite Shapes #3

Statics - Centroids of Composite Shapes #3

Statics - Centroids of Composite Shapes #1

Statics - Centroids of Composite Shapes #1

Учебный комплект 9–10. Центроиды площадей составных фигур: прямоугольники и полукруги

Учебный комплект 9–10. Центроиды площадей составных фигур: прямоугольники и полукруги

Engineering Mechanics I Worksheet on centroid of Composite body

Engineering Mechanics I Worksheet on centroid of Composite body

Moment of Inertia of Composite Bodies

Moment of Inertia of Composite Bodies

Statics 9.9 and 9.10 - Locate the centroid of the shaded area.

Statics 9.9 and 9.10 - Locate the centroid of the shaded area.

How to find the moment of inertia for composite shapes

How to find the moment of inertia for composite shapes

How to find Centroid of an Composite Plane | Problem 6 |

How to find Centroid of an Composite Plane | Problem 6 |

Centroid of Composite Bodies: Statics Example.

Centroid of Composite Bodies: Statics Example.

Find the centroid, calculus 2

Find the centroid, calculus 2

Centroids part 3

Centroids part 3

Calculating moment of inertia of areas for composite bodies

Calculating moment of inertia of areas for composite bodies

Centroid of a Composite Shape - Tabular Method - Part 1

Centroid of a Composite Shape - Tabular Method - Part 1

How to Find the Centroid of a 3D Object EXAMPLE PROBLEM // Center of Mass of Composite Bodies

How to Find the Centroid of a 3D Object EXAMPLE PROBLEM // Center of Mass of Composite Bodies

Beam Deflection using Moment-Area Method Part 1 of 4 (Bisaya, Tagalog, English)

Beam Deflection using Moment-Area Method Part 1 of 4 (Bisaya, Tagalog, English)

Statics: Lesson 42 - Intro to Centroid by Calculus Method, Flip the Strip Method

Statics: Lesson 42 - Intro to Centroid by Calculus Method, Flip the Strip Method

Statics - Centroids of Composite Shapes #2

Statics - Centroids of Composite Shapes #2

Introduction to centroids (statics)

Introduction to centroids (statics)

Момент инерции путем интегрирования задачи и ее решение!

Момент инерции путем интегрирования задачи и ее решение!

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]