PS 1:Explore, exploit, and explain: personalizing explainable recommendations with bandits
Автор: ACM RecSys
Загружено: 2019-04-04
Просмотров: 1689
Описание:
Explore, exploit, and explain: personalizing explainable recommendations with bandits
James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues Bouchard, Alois Gruson, Rishabh Mehrotra
10.1145/3240323.3240354
The multi-armed bandit is an important framework for balancing exploration with exploitation in recommendation. Exploitation recommends content (e.g., products, movies, music playlists) with the highest predicted user engagement and has traditionally been the focus of recommender systems. Exploration recommends content with uncertain predicted user engagement for the purpose of gathering more information. The importance of exploration has been recognized in recent years, particularly in settings with new users, new items, non-stationary preferences and attributes. In parallel, explaining recommendations ("recsplanations") is crucial if users are to understand their recommendations. Existing work has looked at bandits and explanations independently. We provide the first method that combines both in a principled manner. In particular, our method is able to jointly (1) learn which explanations each user responds to; (2) learn the best content to recommend for each user; and (3) balance exploration with exploitation to deal with uncertainty. Experiments with historical log data and tests with live production traffic in a large-scale music recommendation service show a significant improvement in user engagement.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: