ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Personalizing Explainable Recommendations with Multi-objective Contextual Bandits

Автор: MLconf

Загружено: 2019-04-05

Просмотров: 17525

Описание: Speaker: Rishabh Mehrotra, Research Scientist, Spotify Research

Slides: https://www.slideshare.net/SessionsEv...

Talk Description:
"In recent years, two sided marketplaces have emerged as viable business models in many real world applications (e.g. Amazon, AirBnb, Spotify, YouTube), wherein the platforms have customers not only on the demand side (e.g. users), but also on the supply side (e.g. retailer, artists). Such multi-sided marketplace involves interaction between multiple stakeholders among which there are different individuals with assorted needs. While traditional recommender systems focused specifically towards increasing consumer satisfaction by providing relevant content to the consumers, two-sided marketplaces face an interesting problem of optimizing their models for supplier preferences, and visibility.

In this talk, we begin by describing a contextual bandit model developed for serving explainable music recommendations to users and showcase the need for explicitly considering supplier-centric objectives during optimization. To jointly optimize the objectives of the different marketplace constituents, we present a multi-objective contextual bandit model aimed at maximizing long-term vectorial rewards across different competing objectives. Finally, we discuss theoretical performance guarantees as well as experimental results with historical log data and tests with live production traffic in a large-scale music recommendation service."

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Personalizing Explainable Recommendations with Multi-objective Contextual Bandits

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Contextual Bandits Problem

The Contextual Bandits Problem

CS885 Lecture 8a: Multi-armed bandits

CS885 Lecture 8a: Multi-armed bandits

Optimizing Recommendations with Multi-Armed & Contextual Bandits for Personalized Next Best Actions

Optimizing Recommendations with Multi-Armed & Contextual Bandits for Personalized Next Best Actions

Music Recommendations at Spotify - Oskar Stål, Spotify

Music Recommendations at Spotify - Oskar Stål, Spotify

Bandit Algorithms - 1

Bandit Algorithms - 1

Выборка Томпсона, однорукие бандиты и бета-распределение

Выборка Томпсона, однорукие бандиты и бета-распределение

Trends in Recommendation & Personalization at Netflix

Trends in Recommendation & Personalization at Netflix

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

⚡️ Прорыв украинцев в Беларусь || Экстренная эвакуация президента

⚡️ Прорыв украинцев в Беларусь || Экстренная эвакуация президента

CS885 Lecture 8b: Bayesian and Contextual Bandits

CS885 Lecture 8b: Bayesian and Contextual Bandits

The Contextual Bandits Problem: A New, Fast, and Simple Algorithm

The Contextual Bandits Problem: A New, Fast, and Simple Algorithm

Как я учусь в 10 раз быстрее: Система с AI, Perplexity и NotebookLM

Как я учусь в 10 раз быстрее: Система с AI, Perplexity и NotebookLM

2019 TutORial: Recent Advances in Multiarmed Bandits for Sequential Decision Making

2019 TutORial: Recent Advances in Multiarmed Bandits for Sequential Decision Making

What the heck are

What the heck are "contextual bandits"?!

8 Recommender Systems - Machine Learning Class 10-701

8 Recommender Systems - Machine Learning Class 10-701

Amazon AI Conclave 2019 - Contextual Bandits for Efficient A/B Testing

Amazon AI Conclave 2019 - Contextual Bandits for Efficient A/B Testing

Representations from natural language data: successes and challenges

Representations from natural language data: successes and challenges

47th #ebaytechtalk: Deep Learning for Recommender Systems

47th #ebaytechtalk: Deep Learning for Recommender Systems

Optimization and Contextual Bandits at Stripe

Optimization and Contextual Bandits at Stripe

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]