ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Peter Owlett - Lessons from 6 months of using Luigi in production

Автор: PyData

Загружено: 2016-05-08

Просмотров: 5908

Описание: PyData London 2016

At Deliveroo we've built our data plumbing from the ground up using Luigi to manage our data workflows. In this talk I'll be walking through our experiences using Luigi scaling from a few simple jobs to a complex, production grade system. This talk is mostly about building robust data pipelines, but is also a little bit about why it's better to be woken up by your cat than by the server alarm.

In the beginning, there was Cron. We had one job, it ran at 1AM, and it was good. Then we added another job, and to make them run one after the other, we used Luigi, which says "This can only run when this is finished". Then we added another ~500 jobs, long running scikitlearn computes, external API dependencies, a business reporting systems with 2000+ reports and 400+ users and a scheduling system with 5000+ users. This is when things got interesting.

This is the story of building the data systems at Deliveroo. This is not a talk about Big Data, cutting edge algorithms or new open source technology. Rather, this is a talk about coping with complexity in a rapidly changing landscape. I'll start from the beginning, giving a brief overview of what Luigi is and why we decided to roll with it. The body of the talk will be about the challenges we faced as our company grew in size and complexity, the solutions that worked (and those that didn't), and what we know now that we didn't know then. I'll cover a bit of the luigi syntax itself, but mostly I'll focus on the things we did around luigi that made it work for us; how (not) to design pipelines, how to test them, how to manage issues gracefully and how to detect problems in advance.

By attending this session you'll learn:

Why DAG based ETL systems are fundamentally useful
What to think about when designing your DAG
What to implement early to save you pain later on

Slides available here: https://speakerdeck.com/peteowlett/le... 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Peter Owlett - Lessons from 6 months of using Luigi in production

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Ярослав Черепанов - Построение пайплайнов обработки данных с использованием Luigi

Ярослав Черепанов - Построение пайплайнов обработки данных с использованием Luigi

Moreno Bonaventura - The NetworkL python package

Moreno Bonaventura - The NetworkL python package

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

Assurance Scoring Using Machine Learning and Analytics to Reduce Risk in the Public Sector

Assurance Scoring Using Machine Learning and Analytics to Reduce Risk in the Public Sector

Al Sweigart   Yes, It's Time to Learn Regular Expressions   PyCon 2017

Al Sweigart Yes, It's Time to Learn Regular Expressions PyCon 2017

Data Engineering Principles - Build frameworks not pipelines - Gatis Seja

Data Engineering Principles - Build frameworks not pipelines - Gatis Seja

Laura Lorenz | How I learned to time travel, or, data pipelining and scheduling with Airflow

Laura Lorenz | How I learned to time travel, or, data pipelining and scheduling with Airflow

Мы стоим на пороге нового конфликта! Что нас ждет дальше? Андрей Безруков про США, Россию и кризис

Мы стоим на пороге нового конфликта! Что нас ждет дальше? Андрей Безруков про США, Россию и кризис

Савватеев разоблачает фокусы Земскова

Савватеев разоблачает фокусы Земскова

ChatGPT продает ваши чаты, Anthropic создает цифровых существ, а Маск как всегда…

ChatGPT продает ваши чаты, Anthropic создает цифровых существ, а Маск как всегда…

Neal Lathia - Mining smartphone sensor data with python

Neal Lathia - Mining smartphone sensor data with python

Алекс Карп (ген. директор Palantir Technologies): оборонное ПО, перспективы внедрения ИИ и другое

Алекс Карп (ген. директор Palantir Technologies): оборонное ПО, перспективы внедрения ИИ и другое

Data Pipelines - Comparing Airflow and Luigi - Orr Shilon & Alex Levin - PyCon Israel 2019

Data Pipelines - Comparing Airflow and Luigi - Orr Shilon & Alex Levin - PyCon Israel 2019

Machine Learning Pipeline using Luigi and Scikit Learn - PyConSG 2016

Machine Learning Pipeline using Luigi and Scikit Learn - PyConSG 2016

Новое инженерное решение - неограниченный контекст и предсказуемые рассуждения - Recursive LM.

Новое инженерное решение - неограниченный контекст и предсказуемые рассуждения - Recursive LM.

Почему ваш сайт должен весить 14 КБ

Почему ваш сайт должен весить 14 КБ

Functional Data Engineering - A Set of Best Practices | Lyft

Functional Data Engineering - A Set of Best Practices | Lyft

Building Data Pipelines Using Python Tutorial | Data Pipelines Using Python Course

Building Data Pipelines Using Python Tutorial | Data Pipelines Using Python Course

Michał Karzyński - Developing elegant workflows in Python code with Apache Airflow

Michał Karzyński - Developing elegant workflows in Python code with Apache Airflow

Luigi Project - Use Case

Luigi Project - Use Case

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]