ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

NEURAL NETWORKS ARE WEIRD! - Neel Nanda (DeepMind)

Автор: Machine Learning Street Talk

Загружено: 2024-12-07

Просмотров: 108599

Описание: Neel Nanda, a senior research scientist at Google DeepMind, leads their mechanistic interpretability team. In this extensive interview, he discusses his work trying to understand how neural networks function internally. At just 26 years old, Nanda has quickly become a prominent voice in AI research after completing his pure mathematics degree at Cambridge in 2020.

Nanda reckons that machine learning is unique because we create neural networks that can perform impressive tasks (like complex reasoning and software engineering) without understanding how they work internally. He compares this to having computer programs that can do things no human programmer knows how to write. His work focuses on "mechanistic interpretability" - attempting to uncover and understand the internal structures and algorithms that emerge within these networks.

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on ARC and AGI, they just acquired MindsAI - the current winners of the ARC challenge. Are you interested in working on ARC, or getting involved in their events? Goto https://tufalabs.ai/
***

SHOWNOTES, TRANSCRIPT, ALL REFERENCES (DONT MISS!):
https://www.dropbox.com/scl/fi/36dvtf...

We riff on:
How neural networks develop meaningful internal representations beyond simple pattern matching
The effectiveness of chain-of-thought prompting and why it improves model performance
The importance of hands-on coding over extensive paper reading for new researchers
His journey from Cambridge to working with Chris Olah at Anthropic and eventually Google DeepMind
The role of mechanistic interpretability in AI safety

NEEL NANDA:
https://www.neelnanda.io/
https://scholar.google.com/citations?...
https://x.com/NeelNanda5

Interviewer - Tim Scarfe

TOC:
1. Part 1: Introduction
[00:00:00] 1.1 Introduction and Core Concepts Overview

2. Part 2: Outside Interview
[00:06:45] 2.1 Mechanistic Interpretability Foundations

3. Part 3: Main Interview
[00:32:52] 3.1 Mechanistic Interpretability

4. Neural Architecture and Circuits
[01:00:31] 4.1 Biological Evolution Parallels
[01:04:03] 4.2 Universal Circuit Patterns and Induction Heads
[01:11:07] 4.3 Entity Detection and Knowledge Boundaries
[01:14:26] 4.4 Mechanistic Interpretability and Activation Patching

5. Model Behavior Analysis
[01:30:00] 5.1 Golden Gate Claude Experiment and Feature Amplification
[01:33:27] 5.2 Model Personas and RLHF Behavior Modification
[01:36:28] 5.3 Steering Vectors and Linear Representations
[01:40:00] 5.4 Hallucinations and Model Uncertainty

6. Sparse Autoencoder Architecture
[01:44:54] 6.1 Architecture and Mathematical Foundations
[02:22:03] 6.2 Core Challenges and Solutions
[02:32:04] 6.3 Advanced Activation Functions and Top-k Implementations
[02:34:41] 6.4 Research Applications in Transformer Circuit Analysis

7. Feature Learning and Scaling
[02:48:02] 7.1 Autoencoder Feature Learning and Width Parameters
[03:02:46] 7.2 Scaling Laws and Training Stability
[03:11:00] 7.3 Feature Identification and Bias Correction
[03:19:52] 7.4 Training Dynamics Analysis Methods

8. Engineering Implementation
[03:23:48] 8.1 Scale and Infrastructure Requirements
[03:25:20] 8.2 Computational Requirements and Storage
[03:35:22] 8.3 Chain-of-Thought Reasoning Implementation
[03:37:15] 8.4 Latent Structure Inference in Language Models

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
NEURAL NETWORKS ARE WEIRD! - Neel Nanda (DeepMind)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

AIs Are Lying to Users to Pursue Their Own Goals | Marius Hobbhahn (CEO of Apollo Research)

AIs Are Lying to Users to Pursue Their Own Goals | Marius Hobbhahn (CEO of Apollo Research)

What the f**k Happened to Skype?

What the f**k Happened to Skype?

This is why Deep Learning is really weird.

This is why Deep Learning is really weird.

Causal Mechanistic Interpretability (Stanford lecture 1) - Atticus Geiger

Causal Mechanistic Interpretability (Stanford lecture 1) - Atticus Geiger

Introduction to Neural Networks for Scientists

Introduction to Neural Networks for Scientists

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

The most complex model we actually understand

The most complex model we actually understand

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

The AI Wake-Up Call Everyone Needs Right Now!

The AI Wake-Up Call Everyone Needs Right Now!

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Why Deep Learning Works Unreasonably Well [How Models Learn Part 3]

Why Deep Learning Works Unreasonably Well [How Models Learn Part 3]

Terence Tao at IMO 2024: AI and Mathematics

Terence Tao at IMO 2024: AI and Mathematics

Почему диффузия работает лучше, чем авторегрессия?

Почему диффузия работает лучше, чем авторегрессия?

We Can Monitor AI’s Thoughts… For Now | Google DeepMind's Neel Nanda

We Can Monitor AI’s Thoughts… For Now | Google DeepMind's Neel Nanda

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Самый важный алгоритм в машинном обучении

Самый важный алгоритм в машинном обучении

The Dark Matter of AI [Mechanistic Interpretability]

The Dark Matter of AI [Mechanistic Interpretability]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]