ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Автор: PyData

Загружено: 2020-09-15

Просмотров: 24326

Описание: PyData is excited to announce PyData Global, November 11th - 15th! Tickets are now available: https://global.pydata.org/pages/ticke...
Part of an underrepresented group in tech? PyData Global is offering Diversity Scholarships. Applications close September 30th: https://docs.google.com/forms/d/e/1FA...

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Time series are ubiquitous in real-world applications, but often add considerable complications to data science workflows. What’s more, most available machine learning toolboxes (e.g. scikit-learn) are limited to the tabular setting, and cannot easily be applied to time series data.

In this tutorial, you’ll learn how to apply common machine learning techniques to time series and how to extend available toolkits. This is a beginner-friendly tutorial: we assume familiarity with scikit-learn, but no prior experience with time series.

To start, you’ll learn how to distinguish between different kinds of temporal data and associated learning tasks, such as forecasting and time series classification. You’ll then learn how to solve these tasks with machine learning techniques specific to time series data, including:

State-of-the-art algorithms for time series classification and regression, Reduction strategies, i.e. solving a complex learning tasks by decomposing it into simpler tasks, e.g. solving forecasting via regression, Composite strategies like ensembling and pipelining, as well as data transformations like detrending and feature extraction. We’ll work through all of them step by step and make use of interactive Jupyter notebooks and sktime, a new scikit-learn compatible toolbox for machine learning with time series (https://github.com/alan-turing-instit....

===
www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Jim Dowling - Hopsworks.AI - A feature Store for Machine Learning | PyData Fest Amsterdam 2020

Jim Dowling - Hopsworks.AI - A feature Store for Machine Learning | PyData Fest Amsterdam 2020

Ian Ozsvald: A gentle introduction to Pandas timeseries and Seaborn | PyData London 2019

Ian Ozsvald: A gentle introduction to Pandas timeseries and Seaborn | PyData London 2019

Franz Kiraly: sktime - python toolbox for time series: advanced forecasting - probabilistic, glob...

Franz Kiraly: sktime - python toolbox for time series: advanced forecasting - probabilistic, glob...

sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Daniel Chen: Cleaning and Tidying Data in Pandas | PyData DC 2018

Daniel Chen: Cleaning and Tidying Data in Pandas | PyData DC 2018

FDAP Stack: High-Performance Data Architecture based on Apache Arrow

FDAP Stack: High-Performance Data Architecture based on Apache Arrow

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Chronos: Time series forecasting in the age of pretrained models

Chronos: Time series forecasting in the age of pretrained models

[OSA Community event] Lazy Buckaroo: Analyze Big Data on Your Laptop w/Paddy Mullen

[OSA Community event] Lazy Buckaroo: Analyze Big Data on Your Laptop w/Paddy Mullen

Лучший документальный фильм про создание ИИ

Лучший документальный фильм про создание ИИ

Попытка свержения власти / Лавров обвинил президента

Попытка свержения власти / Лавров обвинил президента

James Powell: So you want to be a Python expert? | PyData Seattle 2017

James Powell: So you want to be a Python expert? | PyData Seattle 2017

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Weekend Listen: Why the Tech World Is Going Crazy for Claude Code | Big Take

Weekend Listen: Why the Tech World Is Going Crazy for Claude Code | Big Take

MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell

MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell

Apache Sedona Community Office Hour: January 2026

Apache Sedona Community Office Hour: January 2026

Ian Ozsvald - Making Pandas Fly | PyData Fest Amsterdam 2020

Ian Ozsvald - Making Pandas Fly | PyData Fest Amsterdam 2020

Bayesian hierarchical time series with Prophet and PyMC3 - Matthijs Brouns | PyData Jeddah

Bayesian hierarchical time series with Prophet and PyMC3 - Matthijs Brouns | PyData Jeddah

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]