ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

Автор: PyData

Загружено: 2022-01-20

Просмотров: 29767

Описание: sktime - A Unified Toolbox for Machine Learning with Time Series
Speaker: Markus Löning

Summary
This tutorial is about sktime - a unified framework for machine learning with time series. sktime features various time series algorithms and modular tools for pipelining, ensembling and tuning. You will learn how to use, combine and evaluate different algorithms on real-world data sets and integrate functionality from many existing libraries, including scikit-learn.

Description
Time series are ubiquitous in real-world applications, but often add considerable complications to data science workflows. Many machine learning libraries (e.g. scikit-learn) focus on non-temporal data. And even though there are many time series libraries, they are often incompatible with each other.

In this tutorial, we will present sktime - a unified framework for machine learning with time series (https://github.com/alan-turing-instit.... sktime covers multiple time series learning problems, including time series transformation, classification and forecasting, among others. In addition, sktime allows you to easily apply an algorithm for one task to solve another (e.g. a scikit-learn regressor to solve a forecasting problem). In the tutorial, you will learn about how you can identify these problems, what their key differences are and how they are related.

To solve these problems, sktime provides various time series algorithms and modular tools for pipelining, ensembling and tuning. In addition, sktime is interfaces with many existing libraries, including scikit-learn, statsmodels and fbprophet.

You will learn how to use, combine, tune and evaluate different algorithms on real-world data sets. We'll work through all of this step by step using Jupyter Notebooks. Finally, you will find out about how to get involved in sktime's community.

Markus Löning's Bio
I am one of the core developers of sktime, a unified Python framework for ML with time series. I've recently finished my PhD at UCL and am now working as a data scientist in industry. During my PhD, I spent nine months at the The Alan Turing Institute. My research focuses on ML, time series analysis and software design.
GitHub: https://github.com/mloning/
Twitter:   / mloning_  
LinkedIn:   / mloning  

PyData Global 2021
Website: https://pydata.org/global2021/
LinkedIn:   / pydata-global  
Twitter:   / pydata  

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Time Series Analysis Crash Course: Predict the Future with Python

Time Series Analysis Crash Course: Predict the Future with Python

Power Automate Service Principal Setup from Scratch | Enterprise Setup + Licensing Explained

Power Automate Service Principal Setup from Scratch | Enterprise Setup + Licensing Explained

14-11 Временные ряды в python

14-11 Временные ряды в python

The State of the Art for Probabilistic Programming - Thomas Wiecki | PyData Global 2021

The State of the Art for Probabilistic Programming - Thomas Wiecki | PyData Global 2021

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Serving BERT Models in Production with TorchServe | PyData Global 2021

Serving BERT Models in Production with TorchServe | PyData Global 2021

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Прогнозирование временных рядов с помощью XGBoost — используйте Python и машинное обучение для пр...

Прогнозирование временных рядов с помощью XGBoost — используйте Python и машинное обучение для пр...

Franz Kiraly: sktime - python toolbox for time series: advanced forecasting - probabilistic, glob...

Franz Kiraly: sktime - python toolbox for time series: advanced forecasting - probabilistic, glob...

Ускоренный курс LangChain для начинающих | Учебное пособие по LangChain

Ускоренный курс LangChain для начинающих | Учебное пособие по LangChain

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

SHAZAM Top 50🏖️Лучшая Музыка 2025🏖️Зарубежные песни Хиты🏖️Популярные Песни Слушать Бесплатно #40

SHAZAM Top 50🏖️Лучшая Музыка 2025🏖️Зарубежные песни Хиты🏖️Популярные Песни Слушать Бесплатно #40

Bayesian hierarchical time series with Prophet and PyMC3 - Matthijs Brouns | PyData Jeddah

Bayesian hierarchical time series with Prophet and PyMC3 - Matthijs Brouns | PyData Jeddah

Effective Pandas I Matt Harrison I PyData Salt Lake City Meetup

Effective Pandas I Matt Harrison I PyData Salt Lake City Meetup

Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns)

Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns)

MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell

MLBBQ: “Are Transformers Effective for Time Series Forecasting?” by Joanne Wardell

Franz Kiraly - Sktime—Python Toolbox for Time Series: How to Implement Your Own Estimator

Franz Kiraly - Sktime—Python Toolbox for Time Series: How to Implement Your Own Estimator

Использование XGBoost для прогнозирования временных рядов в Python ❌ Учебное пособие по XGBoost д...

Использование XGBoost для прогнозирования временных рядов в Python ❌ Учебное пособие по XGBoost д...

Tamara Louie: Applying Statistical Modeling & Machine Learning to Perform Time-Series Forecasting

Tamara Louie: Applying Statistical Modeling & Machine Learning to Perform Time-Series Forecasting

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]