Tom Hengl: "Machine Learning as a generic framework for spatial prediction"
Автор: OpenGeoHub Foundation Official Channel
Загружено: 2018-09-17
Просмотров: 3051
Описание:
Summary: This tutorial explains how to use Random Forest to generate spatial and spatiotemporal predictions (i.e. to make maps from point observations using Random Forest). Spatial auto-correlation, especially if still existent in the cross-validation residuals, indicates that the predictions are maybe biased, and this is sub-optimal. To account for this, we use Random Forest (as implemented in the ranger package) in combination with geographical distances to sampling locations to fit models and predict values.
Tutorials: RFsp — Random Forest for spatial data (https://github.com/thengl/GeoMLA)
Reference: Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler B. (2018) Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6:e5518 https://doi.org/10.7717/peerj.5518
Requirements: RStudio, preinstalled packages based on the tutorial above.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: