ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

Автор: The Julia Programming Language

Загружено: 2023-08-29

Просмотров: 4692

Описание: SymbolicRegression.jl is a state-of-the-art symbolic regression library written from scratch in Julia using a custom evolutionary algorithm. The software emphasizes high-performance distributed computing, and can find arbitrary symbolic expressions to optimize a user-defined objective – thus offering a very interpretable type of machine learning. SymbolicRegression.jl and its Python frontend PySR have been used for model discovery in over 30 research papers, from astrophysics to economics.

SymbolicRegression.jl is an open-source library for practical symbolic regression, a type of machine learning that discovers human-interpretable symbolic models. SymbolicRegression.jl was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed backend, a flexible search algorithm, and interfaces with several deep learning packages. The hand-rolled internal search algorithm is a mixed evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown real-valued constants in newly-discovered empirical expressions. The backend is highly optimized, capable of fusing user-defined operators into SIMD kernels at runtime with LoopVectorization.jl, performing automatic differentiation with Zygote.jl, and distributing populations of expressions to thousands of cores across a cluster using ClusterManagers.jl. In describing this software, I will also share a new benchmark, “EmpiricalBench,” to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.

In this talk, I will describe the nuts and bolts of the search algorithm, its efficient evaluation scheme, DynamicExpressions.jl, and how SymbolicRegression.jl may be used in scientific workflows. I will review existing applications of the software (https://astroautomata.com/PySR/papers/). I will also discuss interfaces with other Julia libraries, including SymbolicUtils.jl, as well as SymbolicRegression.jl's PyJulia-enabled link to the ScikitLearn ecosystem in Python.

Time Stamps:
00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/JuliaCommunity/You...

Interested in improving the auto generated captions? Get involved here: https://github.com/JuliaCommunity/You...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Discrete Element Sea-Ice Modeling in Julia: Successes and Challenges | Skylar Gering | JuliaCon 2023

Discrete Element Sea-Ice Modeling in Julia: Successes and Challenges | Skylar Gering | JuliaCon 2023

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Symbolic Regression for Model Discovery in Python and Julia

Symbolic Regression for Model Discovery in Python and Julia

Goodbye to Scheduling..transitioning testing QC labs from push to pull

Goodbye to Scheduling..transitioning testing QC labs from push to pull

[08x10] Intro to Probabilistic Programming in Julia using Turing.jl and Pluto

[08x10] Intro to Probabilistic Programming in Julia using Turing.jl and Pluto

Accelerating Machine Learning in Julia using Lux & Reactant | Pal | JuliaCon Global 2025

Accelerating Machine Learning in Julia using Lux & Reactant | Pal | JuliaCon Global 2025

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

Крис Ракаукас — NonlinearSolve.jl: Эффективное нахождение корней и алгебраические уравнения в Julia

Крис Ракаукас — NonlinearSolve.jl: Эффективное нахождение корней и алгебраические уравнения в Julia

Keynote: Scientific Machine Learning Through Symbolic Numerics | Chris Rackauckas | JuliaCon 2023

Keynote: Scientific Machine Learning Through Symbolic Numerics | Chris Rackauckas | JuliaCon 2023

Generative Model That Won 2024 Nobel Prize

Generative Model That Won 2024 Nobel Prize

Deep Symbolic Regression: Recovering Math Expressions from Data via Risk-Seeking Policy Gradients

Deep Symbolic Regression: Recovering Math Expressions from Data via Risk-Seeking Policy Gradients

Popular Programming Courses

Popular Programming Courses

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

Python vs Julia

Python vs Julia

Review: Symbolic regression (Miles Cranmer)

Review: Symbolic regression (Miles Cranmer)

Understanding Python: Lesson 69 - PySR

Understanding Python: Lesson 69 - PySR

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Julia в академической среде: учебники, курсы Стэнфорда и будущее | Мосс | JuliaCon Global 2025

Julia в академической среде: учебники, курсы Стэнфорда и будущее | Мосс | JuliaCon Global 2025

Интерпретируемое и объяснимое машинное обучение

Интерпретируемое и объяснимое машинное обучение

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]