ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Geometry Processing with Neural Fields | Guandao Yang

Автор: Valence Labs

Загружено: 2022-03-23

Просмотров: 1324

Описание: Join the Learning on Graphs and Geometry Reading Group: https://hannes-stark.com/logag-readin...

Paper “Geometry Processing with Neural Fields”: http://vladlen.info/papers/neural-fie...

Abstract: Most existing geometry processing algorithms use meshes as the default shape representation. Manipulating meshes, however, requires one to maintain high quality in the surface discretization. For example, changing the topology of a mesh usually requires additional procedures such as remeshing. This paper instead proposes the use of neural fields for geometry processing. Neural fields can compactly store complicated shapes without spatial discretization. Moreover, neural fields are infinitely differentiable, which allows them to be optimized for objectives that involve higher-order derivatives. This raises the question: can geometry processing be done entirely using neural fields? We introduce loss functions and architectures to show that some of the most challenging geometry processing tasks, such as deformation and filtering, can be done with neural fields. Experimental results show that our methods are on par with the well-established mesh-based methods without committing to a particular surface discretization. Code is available at https://github.com/stevenygd/NFGP.

Authors: Guandao Yang, Serge Belongie, Bharath Hariharan, Vladlen Koltun

Twitter Hannes:   / hannesstaerk  
Twitter Dominique:   / dom_beaini  
Twitter Valence Discovery:   / valence_ai  

Reading Group Slack: https://join.slack.com/t/logag/shared...

~

00:00 Begin
00:14 Intro & Presentation Overview
02:45 What is Geometric Processing?
06:10 Implicit Fields
09:36 Training Neural Fields
13:56 Geometry Processing Using Neural Fields
22:26 Deformation with Neural Fields
54:14 Deformation Results
59:58 Limitations and Future Works
1:07:24 Preservation of Field Properties
1:10:04 Q&A
1:24:12 Conclusion

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Geometry Processing with Neural Fields | Guandao Yang

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Geometric and Physical Quantities Improve E(3) Equivariant Message Passing | Johannes Brandstetter

Geometric and Physical Quantities Improve E(3) Equivariant Message Passing | Johannes Brandstetter

Скругление углов в SDF-файлах

Скругление углов в SDF-файлах

Conformal Geometry Processing

Conformal Geometry Processing

This Company is Using 3D Printing and AI to Make Sports Cars

This Company is Using 3D Printing and AI to Make Sports Cars

Message Passing Neural PDE Solvers | Johannes Brandstetter

Message Passing Neural PDE Solvers | Johannes Brandstetter

Starkly Speaking Reading Group (Previously Graphs and Geometry)

Starkly Speaking Reading Group (Previously Graphs and Geometry)

SGP17 Graduate School

SGP17 Graduate School

Student Presentation

Student Presentation

NeRF: Представление сцен в виде нейронных полей излучения для синтеза представлений (объяснение и...

NeRF: Представление сцен в виде нейронных полей излучения для синтеза представлений (объяснение и...

Architecture All Access: Meteor Lake – GPU Architecture | Intel Technology

Architecture All Access: Meteor Lake – GPU Architecture | Intel Technology

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

This is Geometry Processing Made Easy!

This is Geometry Processing Made Easy!

CSC2547   DeepSDF  Learning Continuous Signed Distance Functions for Shape Representation

CSC2547 DeepSDF Learning Continuous Signed Distance Functions for Shape Representation

RI Seminar: Alec Jacobson : Geometry Processing in The Wild

RI Seminar: Alec Jacobson : Geometry Processing in The Wild

SLAE: Strictly Local All-atom Environment for Protein Representation | Yilin Chen

SLAE: Strictly Local All-atom Environment for Protein Representation | Yilin Chen

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

Нейронная сеть с нуля | Математика и код на Python

Нейронная сеть с нуля | Математика и код на Python

Почему 100 лет в электропоездах применяли не самый лучший двигатель? #энерголикбез

Почему 100 лет в электропоездах применяли не самый лучший двигатель? #энерголикбез

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Modeling Complex System Dynamics with Flow Matching Across Time and Conditions | Romain Lopez

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]