measuring straightness by wire
Автор: Harald Finster
Загружено: 2024-12-15
Просмотров: 9730
Описание:
This is a quick demonstration of using a wire and a microscope to measure the straightness of the ways of a lathe.
calculation of the wire sag
The (German) wikipedia article
https://de.wikipedia.org/wiki/Seilstatik
gives the following formula for the sag of a rope/wire under evenly distributed load
with
y = vertical position of the wire
x = horizontal position
x0 / y0 = position of left wire end
L / yL = position of right wire end
q0 = vertical force caused by the distributed load of the wire (the weight of the wire)
H = horizontal tensioning force
y(x) = q0 / ( 2 H ) * x^2 ( ( yL - y0 ) / L -q0 L / ( 2 H ) ) * x + y0
this can be reduced
y0 = yL = 0;
x0 = 0;
L = length of the machine bed (in this case 1.2 m)
this gives
y(x) = q0 / ( 2 H ) x^2 ( 0 - q0 / ( 2 H ) ) x + 0
y(x) = q0 / ( 2 h ) ( x^2 - L x )
plausibility check at the ends
y(x=0) = q0 / ( 2 H ) ( 0^2 - L 0 ) = 0 (ok)
y(x=L) = q0 / ( 2 H ) ( L^2 - L L ) = 0 (ok)
Now we need the forces q0 and H
The tensioning force is calculated from the mass of the tensioning weight and the gravitational constant g
H = W * g
The distributed force caused by the weight per meter of the wire M is
q0 = M * g
The wire mass per meter is the product of the cross section A and the density D
M = A * D
with the radius of the wire r
M = pi r^2 * D
this gives the factor
q0/(2H) = ( pi r^2 * D g ) / ( W g )
g cancels out
q0/(2H) = ( pi r^2 * D ) / W
inserting the actual values
with D = 1140 kg/m^3 as the density for (probably) Nylon
q0/(2H) = ( pi * ( 0.04 10^-3 m ) ^2 * 1140 kg/m^3 ) / ( 2 * 0.5 kg )
q0/(2H) = 5.7303 10^-6 / m
the maximal sag is in the center at x = 0.6 m
this results in
y(x=0.6m) = q0/(2H) * ( 0.6m ^2 - 1.2m * 0.6m )
= 5.7303 10^-6 / m * -0.36 m^2 = -2.0629e-06 m
~= -2 µm
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: