PR-366: A ConvNet for the 2020s
Автор: JinWon Lee (DeepTube)
Загружено: 2022-01-16
Просмотров: 3446
Описание:
#PR12 #PR366
안녕하세요 논문 읽기 모임 PR-12의 366번째 논문리뷰입니다.
올해가 AlexNet이 나온지 10주년이 되는 해네요.
AlexNet이 2012년에 혜성처럼 등장한 이후, Solve computer vision problem = Use CNN이 공식처럼 사용되던 2010년대가 가고
2020년대 들어서 ViT의 등장을 시작으로 Transformer 기반의 network들이 CNN의 자리를 위협하고 상당부분 이미 뺏어간 상황입니다.
2020년대에 CNN의 가야할 길은 어디일까요?
Inductive bias가 적은 Transformer가 대용량의 데이터로 학습하면 항상 CNN보다 더 낫다는 건 진실일까요?
이 논문에서는 2020년대를 위한 CNN이라는 제목으로 ConvNeXt라는 새로운(?) architecture를 제안합니다.
사실 새로운 건 없고 그동안 있었던 것들과 Transformer에서 적용한 것들을 copy해와서 CNN에 적용해보았는데요,
Transformer보다 성능도 좋고 속도도 빠른 결과가 나왔다고 합니다.
결과에 대해서 약간의 논란이 twitter 상에서 나오고 있는데 이 부분 포함해서 자세한 내용은 영상을 통해서 보실 수 있습니다.
늘 재밌게 봐주시고 좋아요 댓글 구독 해주시는 분들께 감사드립니다 :)
논문링크: https://arxiv.org/abs/2201.03545
발표자료링크: https://www.slideshare.net/JinwonLee9...
영상링크: • PR-366: A ConvNet for the 2020s
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: