PR-297: Training Data-efficient Image Transformers & Distillation through Attention (DeiT)
Автор: JinWon Lee (DeepTube)
Загружено: 2021-01-10
Просмотров: 7508
Описание:
안녕하세요 TensorFlow Korea 논문 읽기 모임 PR-12의 297번째 리뷰입니다
어느덧 PR-12 시즌 3의 끝까지 논문 3편밖에 남지 않았네요.
시즌 3가 끝나면 바로 시즌 4의 새 멤버 모집이 시작될 예정입니다. 많은 관심과 지원 부탁드립니다~~
(멤버 모집 공지는 Facebook TensorFlow Korea 그룹에 올라올 예정입니다)
오늘 제가 리뷰한 논문은 Facebook의 Training data-efficient image transformers & distillation through attention 입니다.
Google에서 나왔던 ViT논문 이후에 convolution을 전혀 사용하지 않고 오직 attention만을 이용한 computer vision algorithm에 어느때보다 관심이 높아지고 있는데요
이 논문에서 제안한 DeiT 모델은 ViT와 같은 architecture를 사용하면서 ViT가 ImageNet data만으로는 성능이 잘 안나왔던 것에 비해서
Training 방법 개선과 distillation token을 사용하는 새로운 Knowledge Distillation 방법을 사용하여 mageNet data 만으로 EfficientNet보다 뛰어난 성능을 보여주는 결과를 얻었습니다.
정말 CNN은 이제 서서히 사라지게 되는 것일까요? Attention이 computer vision도 정복하게 될 것인지....
개인적으로는 당분간은 attention 기반의 CV 논문이 쏟아질 거라고 확신하고, 또 여기에서 놀라운 일들이 일어날 수 있을 거라고 생각하고 있습니다
CNN은 10년간 많은 연구를 통해서 발전해왔지만, transformer는 이제 CV에 적용된 지 얼마 안된 시점이라서 더 기대가 크구요,
attention이 inductive bias가 가장 적은 형태의 모델이기 때문에 더 놀라운 이들을 만들 수 있을거라고 생각합니다
얼마 전에 나온 open AI의 DALL-E도 그 대표적인 예라고 할 수 있을 것 같습니다. Transformer의 또하나의 transformation이 궁금하신 분들은 아래 영상을 참고해주세요
영상링크: • PR-297: Training Data-efficient Image Tran...
논문링크: https://arxiv.org/abs/2012.12877
발표자료링크: https://www2.slideshare.net/JinwonLee...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: