ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Richard Y. Zhang: Rank Overparameterization and Global Optimality Certification ... (UIUC)

Автор: USC Probability and Statistics Seminar

Загружено: 2024-10-04

Просмотров: 278

Описание: Numerous important problems across applied statistics reduce into nonconvex estimation / optimization over a low-rank matrix. In principle, these can be reliably solved to global optimality via convex relaxation, but the computational costs can become prohibitive on a large scale. In practice, it is much more common to optimize over the low-rank matrices directly, as in the Burer-Monteiro approach, but their nonconvexity can cause failure by getting stuck at a spurious local minimum. For safety-critical societal applications, such as the operation and planning of an electricity grid, our inability to reliably achieve global optimality can have significant real-world consequences.

In the first part of this talk, we investigate how overparameterizing the low-rank factorization can render its nonconvexity increasingly benign. In the smooth and strongly-convex setting, we rigorously show that, as the rank is increased, spurious local minima become increasingly rare in a step-wise fashion. In other words, rank-2 has fewer spurious local minima than rank-1, and rank-3 has fewer than rank-2, etc. Once the rank exceeds an O(1) threshold, every remaining local minimum is a global minimum, and every saddle point can be escaped. In the second part of this talk, we use the rank deficiency brought on by rank overparameterization to certify convergence to global optimality after the fact. The certification is an a posteriori guarantee that is valid under much weaker assumptions than typical “no spurious local minima” guarantees. However, rank deficiency significantly slows down the convergence of gradient descent, from a linear rate to a sublinear rate. We propose an inexpensive preconditioner that restores the convergence rate of gradient descent back to linear in the overparameterized case.

Main related papers:
https://arxiv.org/abs/2207.01789
https://arxiv.org/abs/2206.03345 (joint work with Gavin Zhang and Salar Fattahi)

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Richard Y. Zhang: Rank Overparameterization and Global Optimality Certification ... (UIUC)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Yizhe Zhu: Non-convex matrix sensing: Breaking the quadratic rank barrier in the sample com... (USC)

Yizhe Zhu: Non-convex matrix sensing: Breaking the quadratic rank barrier in the sample com... (USC)

Morris Yau: Are Neural Networks Optimal Approximation Algorithms (MIT)

Morris Yau: Are Neural Networks Optimal Approximation Algorithms (MIT)

Weixin Yao: New Regression Model: Modal Regression (UC Riverside)

Weixin Yao: New Regression Model: Modal Regression (UC Riverside)

Convergence of Continuous-Time Stochastic Gradient Descent with Applications to Deep Neural Networks

Convergence of Continuous-Time Stochastic Gradient Descent with Applications to Deep Neural Networks

Yeganeh Alimohammadi: How to Measure Differences in Rankings (USC)

Yeganeh Alimohammadi: How to Measure Differences in Rankings (USC)

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Mahdi Soltanolkotabi: Foundations for feature learning via gradient descent (USC)

Mahdi Soltanolkotabi: Foundations for feature learning via gradient descent (USC)

Рекордный вывод НАЛИЧНЫХ из банков: что планирует правительство?

Рекордный вывод НАЛИЧНЫХ из банков: что планирует правительство?

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Conversation with Elon Musk | World Economic Forum Annual Meeting 2026

Mo Zhou: Score-based neural ordinary differential equations and normalizing flow ... (UCLA)

Mo Zhou: Score-based neural ordinary differential equations and normalizing flow ... (UCLA)

1-Hour Pink & Orange Aura Study Timer | No Breaks, No Music | Deep Focus ⏳✨

1-Hour Pink & Orange Aura Study Timer | No Breaks, No Music | Deep Focus ⏳✨

Теорема Гаусса в электростатике

Теорема Гаусса в электростатике

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Valentine’s Day Love Hearts 💕 Gold & Pink Oil Painting | Free TV Screensaver

Valentine’s Day Love Hearts 💕 Gold & Pink Oil Painting | Free TV Screensaver

Po-Ling Loh: Differentially private M-estimation via noisy optimization (University of Cambridge)

Po-Ling Loh: Differentially private M-estimation via noisy optimization (University of Cambridge)

Trump Launches Board of Peace Amid Discord; Tech Leads Stock Rally | Bloomberg Brief 1/22/2026

Trump Launches Board of Peace Amid Discord; Tech Leads Stock Rally | Bloomberg Brief 1/22/2026

Урок 3 (осн). Физические величины и единицы их измерения

Урок 3 (осн). Физические величины и единицы их измерения

The new AI race: Enterprise innovation in 2026

The new AI race: Enterprise innovation in 2026

1-Hour Pink Aura Timer  | No-Break Timer for Study, Work, Reading & More

1-Hour Pink Aura Timer | No-Break Timer for Study, Work, Reading & More

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]