ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense Forest Canopy

Автор: Vijay Kumar

Загружено: 2021-09-17

Просмотров: 11971

Описание: Paper: https://arxiv.org/abs/2109.06479
5-min voice-over version:    • Large-scale Autonomous Flight with Real-ti...  
Code (released on 02/22/2022): https://github.com/KumarRobotics/kr_a... (autonomous flight system) and https://github.com/KumarRobotics/sloam (semantic SLAM algorithm)

Abstract:
Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale.

Acknowledgement:
This work was supported by funding from the the IoT4Ag Engineering Research Center funded by the National Science Foundation (NSF) under NSF Cooperative Agreement Number EEC-1941529, and C-BRIC, a Semiconductor Research Corporation Joint University Microelectronics Program program cosponsored by DARPA. This work was also partially supported by INCT-INSac grants CNPq 465755/2014-3, FAPESP 2014/50851-0, and 2017/17444-0. We gratefully acknowledge the Distributed and Collaborative Intelligent Systems and Technology Collaborative Research Alliance (DCIST) team for building the simulation infrastructure, and New Jersey State Forestry Services staff for supporting experiments in the Wharton State Forest. We also thank Dr. Avraham Cohen for the original design of Falcon 4 platform, Dr. Ke Sun and Dr. Kartik Mohta for their insights and help regarding autonomous flight system development and field experiments, and Dr. Luiz Rodriguez for the over-canopy LIDAR data.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense Forest Canopy

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Autonomous UAV Flight and Mapping beneath Forest Canopy (high-fidelity simulated and real forests)

Autonomous UAV Flight and Mapping beneath Forest Canopy (high-fidelity simulated and real forests)

Experiments in Fast, Autonomous, GPS-Denied Quadrotor Flight

Experiments in Fast, Autonomous, GPS-Denied Quadrotor Flight

RT-GuIDE: Real-Time Gaussian Splatting for Information-Driven Exploration

RT-GuIDE: Real-Time Gaussian Splatting for Information-Driven Exploration

Autonomous Drone Navigation with Deep Learning. Flight over 250 meter Forest Trail

Autonomous Drone Navigation with Deep Learning. Flight over 250 meter Forest Trail

MSA- Visual SLAM (no lidar, no IMU) on a drone -- extended version

MSA- Visual SLAM (no lidar, no IMU) on a drone -- extended version

Autonomous UAV Flight and Mapping in Forests

Autonomous UAV Flight and Mapping in Forests

Photogrammetry VS LiDAR - Which Is BETTER?

Photogrammetry VS LiDAR - Which Is BETTER?

Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization

Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization

7 САМЫХ СТРАННЫХ новых дронов

7 САМЫХ СТРАННЫХ новых дронов

Phantom MK1 против EngineAI T800: гуманоидные роботы-воины (AI NEWS)

Phantom MK1 против EngineAI T800: гуманоидные роботы-воины (AI NEWS)

Demonstration of visual navigation system for autonomous drones

Demonstration of visual navigation system for autonomous drones

Triangulating Unknown Environments using Robot Swarms

Triangulating Unknown Environments using Robot Swarms

Risk-Aware MPC Planning for Unmanned Ground Vehicles

Risk-Aware MPC Planning for Unmanned Ground Vehicles

Swarm exploration by tiny flying robots

Swarm exploration by tiny flying robots

A brief Introduction to lidar forest mapping

A brief Introduction to lidar forest mapping

OMPHOBBY - ZMO Version 2 - Long Range VTOL

OMPHOBBY - ZMO Version 2 - Long Range VTOL

ICRA26:An Adaptive Inspection Planning Approach Towards Routine Monitoring in Uncertain Environments

ICRA26:An Adaptive Inspection Planning Approach Towards Routine Monitoring in Uncertain Environments

Pushbroom Stereo for High-Speed Obstacle Avoidance (technical video)

Pushbroom Stereo for High-Speed Obstacle Avoidance (technical video)

EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments

EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments

Quadcopter Navigation in the Forest using Deep Neural Networks

Quadcopter Navigation in the Forest using Deep Neural Networks

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]