ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Christian Knoth - Introduction to Deep Learning in R for analysis of UAV-based remote sensing data

Автор: OpenGeoHub Foundation Official Channel

Загружено: 2020-09-16

Просмотров: 4566

Описание: Summary: The aim of this tutorial is to develop a basic understanding of the key practical steps involved in creating and applying a convolutional neural network (CNN) for image analysis – and how to do that in R.
These steps are:
Building your model
Preparing your data
Training your model
Predicting with your model
Besides the basic workflow, we will discuss two strategies for tackling small data problems, which is specifically important when working with UAV-based data: data augmentation and transfer learning.
In addition, we will look at aspects that are important for many remote sensing applications of CNNs: we´ll develop a model for pixel-by-pixel classification (instead of image classification) using an architecture called “U-net”. We will also address the practical question of how to turn a remote sensing image into something that can be processed by our CNN, and how to reassemble the predictions back to a map.
Finally, we will briefly touch on the topic of inspecting what a trained model has learned.

Installation instructions & material: https://github.com/DaChro/ogh_summer_...

References:
Chollet, F., and J.J. Allaire. 2018. Deep Learning with R. Manning Publications.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted Intervention – Miccai 2015

How to cite this video:
http://doi.org/10.5446/49550

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Christian Knoth - Introduction to Deep Learning in R for analysis of UAV-based remote sensing data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Paula Moraga: Spatial modeling and interactive visualization with the R-INLA package

Paula Moraga: Spatial modeling and interactive visualization with the R-INLA package

Advanced Machine Learning for Remote Sensing: Neural Networks

Advanced Machine Learning for Remote Sensing: Neural Networks

Advanced Machine Learning for Remote Sensing: Basics

Advanced Machine Learning for Remote Sensing: Basics

DataPhilly Jan 2021: Satellite Imagery Analysis with Python

DataPhilly Jan 2021: Satellite Imagery Analysis with Python

IEEE GRSS Remote Sensing Training Materials

IEEE GRSS Remote Sensing Training Materials

Hanna Meyer:

Hanna Meyer: "Machine-learning based modelling of spatial and spatio-temporal data"

17. Machine Learning for Remote Sensing Data Analysis

17. Machine Learning for Remote Sensing Data Analysis

Две модели, которые должен знать каждый ML‑джун

Две модели, которые должен знать каждый ML‑джун

Monitoring Crops using Drones, Hyperspectral and Machine Learning

Monitoring Crops using Drones, Hyperspectral and Machine Learning

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Remote Sensing Image Analysis and Interpretation: Introduction to Remote Sensing

Remote Sensing Image Analysis and Interpretation: Introduction to Remote Sensing

Мой опыт перехода с MacOS на Linux | Полный гайд

Мой опыт перехода с MacOS на Linux | Полный гайд

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

Measuring Impact with Remotely Sensed Imagery and Machine Learning

Measuring Impact with Remotely Sensed Imagery and Machine Learning

Deep Learning with Keras & TensorFlow in R | Multilayer Perceptron for Multiclass Classification

Deep Learning with Keras & TensorFlow in R | Multilayer Perceptron for Multiclass Classification

Advanced Machine Learning for Remote Sensing: Welcome

Advanced Machine Learning for Remote Sensing: Welcome

R you Ready to Python?  An Introduction to Working with Land Remote Sensing Data in R and Python

R you Ready to Python? An Introduction to Working with Land Remote Sensing Data in R and Python

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Deep Learning with R | 01 | Regression as a first step in deep learning

Deep Learning with R | 01 | Regression as a first step in deep learning

Deep Neural Networks  with TensorFlow & Keras in R | Numeric Response Variable

Deep Neural Networks with TensorFlow & Keras in R | Numeric Response Variable

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]