ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough)

Автор: TechViz - The Data Science Guy

Загружено: 2021-09-21

Просмотров: 12567

Описание: #graphsage #machinelearning #graphml
In this video, we go will through this popular GraphSAGE paper in the field of GNN and understand the inductive learning methodology on large graphs.

⏩ Abstract: Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

Please feel free to share out the content and subscribe to my channel :)
⏩ Subscribe -    / @techvizthedatascienceguy  

⏩ OUTLINE:
0:00 - Abstract and Introduction
01:00 - Visual Illustration of GraphSAGE
04:21 - Embedding Generation algorithm with GraphSAGE
08:00 - Learning Parameters of GraphSAGE
10:46 - Aggregator Architectures (Mean Aggr, LSTM Aggr, Pool Aggr) and Wrap-up

⏩ Paper Title: Inductive Representation Learning on Large Graphs
⏩ Paper: https://arxiv.org/abs/1706.02216v4
⏩ Author: William L. Hamilton, Rex Ying, Jure Leskovec
⏩ Organisation: Stanford

Graph Machine Learning Playlist:    • DEEPWALK: Online Learning of Social Repres...  

**********************************************
If you want to support me financially which is totally optional and voluntary ❤️
You can consider buying me chai ( because I don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC...
❤️ Support using Paypal - https://www.paypal.com/paypalme/TechV...

**********************************************
⏩ Youtube -    / techvizthedatascienceguy  
⏩ LinkedIn -   / prakhar21  
⏩ Medium -   / prakhar.mishra  
⏩ GitHub - https://github.com/prakhar21
⏩ Twitter -   / rattller  
*********************************************

Tools I use for making videos :)
⏩ iPad - https://tinyurl.com/y39p6pwc
⏩ Apple Pencil - https://tinyurl.com/y5rk8txn
⏩ GoodNotes - https://tinyurl.com/y627cfsa

#techviz #datascienceguy #representation #research #graphs
About Me:
I am Prakhar Mishra and this channel is my passion project. I am currently pursuing my MS (by research) in Data Science. I have an industry work-ex of 3 years in the field of Data Science and Machine Learning with a particular focus on Natural Language Processing (NLP).

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

GAT: Graph Attention Networks (Graph ML Research Paper Walkthrough)

GAT: Graph Attention Networks (Graph ML Research Paper Walkthrough)

R-GCN: Modeling Relational Data with Graph Convolution Network (Graph ML Research Paper Walkthrough)

R-GCN: Modeling Relational Data with Graph Convolution Network (Graph ML Research Paper Walkthrough)

Graph SAGE - Inductive Representation Learning on Large Graphs | GNN Paper Explained

Graph SAGE - Inductive Representation Learning on Large Graphs | GNN Paper Explained

DEEPWALK: Онлайн-обучение социальным представлениям | Машинное обучение с графами (подробное опис...

DEEPWALK: Онлайн-обучение социальным представлениям | Машинное обучение с графами (подробное опис...

Graph Neural Networks - a perspective from the ground up

Graph Neural Networks - a perspective from the ground up

Раскрытие потенциала передачи сообщений: изучение GraphSAGE, GCN и GAT | GNN GraphML

Раскрытие потенциала передачи сообщений: изучение GraphSAGE, GCN и GAT | GNN GraphML

Graph Neural Networks: A gentle introduction

Graph Neural Networks: A gentle introduction

Простая передача сообщений на графах

Простая передача сообщений на графах

[Deep Graph Learning] 4.6 GNN inductive vs transductive learning

[Deep Graph Learning] 4.6 GNN inductive vs transductive learning

GraphSAGE - Inductive Representation Learning on Large Graphs - Paper Overview

GraphSAGE - Inductive Representation Learning on Large Graphs - Paper Overview

He went from studying Greek to Highest Prize in Math

He went from studying Greek to Highest Prize in Math

Stanford CS224W: Machine Learning with Graphs | 2021 | Lecture 17.2 - GraphSAGE Neighbor Sampling

Stanford CS224W: Machine Learning with Graphs | 2021 | Lecture 17.2 - GraphSAGE Neighbor Sampling

Понимание графовых сетей внимания

Понимание графовых сетей внимания

Fake News Detection using Graphs with Pytorch Geometric

Fake News Detection using Graphs with Pytorch Geometric

Объяснение вложений графов (node2vec) — как узлы сопоставляются с векторами

Объяснение вложений графов (node2vec) — как узлы сопоставляются с векторами

Порталы не создают вечный двигатель, если телепортировать гравитацию

Порталы не создают вечный двигатель, если телепортировать гравитацию

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Как Евгения Хасис наврала Ксении Собчак. Разбор интервью и сравнение с прослушками

Как Евгения Хасис наврала Ксении Собчак. Разбор интервью и сравнение с прослушками

How to get started with Graph ML? (Blog walkthrough)

How to get started with Graph ML? (Blog walkthrough)

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]