ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

GAT: Graph Attention Networks (Graph ML Research Paper Walkthrough)

graph attention network

graph attention networks explained

Graph ML Research Paper Walkthrough

gat paper summary

graph attention network paper summary

gat

graph machine learning

graph machine learning research

graph ML

graphs

ai

research paper

graph neural network

gnn

techviz data science

deep learning

technology

graph neural network explained

attention

graph attention

ml

machine learning

Yoshua Bengio

graph embeddings

graph neural networks

Автор: TechViz - The Data Science Guy

Загружено: 2021-09-22

Просмотров: 5708

Описание: #attention #graphml #machinelearning
⏩ Abstract: We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved state-of-the-art results across three established transductive and inductive graph benchmarks: the Cora and Citeseer citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs are entirely unseen during training).

Sign-up for Email Subscription - https://forms.gle/duSwrYAGw6zUhoGf9

Graph Machine Learning Playlist:    • DEEPWALK: Online Learning of Social Repres...  

⏩ OUTLINE:
0:00 - Abstract and Background
02:37 - Understanding Graph Attention Layer - Theory, Equations

⏩ Paper Title: Graph Attention Networks
⏩ Paper: https://arxiv.org/abs/1710.10903v1
⏩ Author: Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio
⏩ Organisation: University of Cambridge, UAB, Montreal Institute for Learning Algorithms

Please feel free to share out the content and subscribe to my channel :)
⏩ Subscribe -    / @techvizthedatascienceguy  

**********************************************
If you want to support me financially which is totally optional and voluntary ❤️
You can consider buying me chai ( because I don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC...
❤️ Support using Paypal - https://www.paypal.com/paypalme/TechV...

**********************************************
⏩ Youtube -    / techvizthedatascienceguy  
⏩ LinkedIn -   / prakhar21  
⏩ Medium -   / prakhar.mishra  
⏩ GitHub - https://github.com/prakhar21
⏩ Twitter -   / rattller  
*********************************************

Tools I use for making videos :)
⏩ iPad - https://tinyurl.com/y39p6pwc
⏩ Apple Pencil - https://tinyurl.com/y5rk8txn
⏩ GoodNotes - https://tinyurl.com/y627cfsa

#techviz #datascienceguy #representation #research #graphs
About Me:
I am Prakhar Mishra and this channel is my passion project. I am currently pursuing my MS (by research) in Data Science. I have an industry work-ex of 3 years in the field of Data Science and Machine Learning with a particular focus on Natural Language Processing (NLP).

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
GAT: Graph Attention Networks (Graph ML Research Paper Walkthrough)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]