Florian Herzig: Towards a mod $p$ Langlands correspondence for $\mathrm{GL}_2$
Автор: BIMSA
Загружено: 2024-07-19
Просмотров: 143
Описание: The mod $p$ Langlands correspondence is an analog of the classical local Langlands correspondence, relating Galois representations and representations of $p$-adic groups over a coefficient field of characteristic $p$ (rather than over the complex numbers). It is well established for the group $\mathrm{GL}_2(\mathbb Q_p)$, but still wide open for other reductive groups, surprisingly even for $\mathrm{GL}_2(K)$, where $K$ is a nontrivial finite extension of $\mathbb Q_p$. I will survey some of the conjectures and recent progress on the mod $p$ Langlands correspondence for $\mathrm{GL}_2(K)$.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: