ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Projective Plane and Homogeneous Coordinates - FLT Proof #4.1.2.5

Автор: greg55666

Загружено: 2019-12-07

Просмотров: 7864

Описание: At last the climax of this little series on the projective plane! With a firm grasp of the basics of vector operations, we're ready to look at the projective plane and homogeneous coordinates. We are continuing to build a basic foundation with our survey of the topics we must explore far more deeply in order to understand the Proof of Fermat's Last Theorem.

We are almost done with this preliminary survey of some basics. From here on out, things are going to get more specialized and difficult. Please subscribe; it will be important to keep together as we move along. I'll want your help, and you won't want to miss anything!

The videos in this series are:

Part 1: Explanation and justification of the dot product.
Part 2: Explanation and justification of the determinant, and its relationship to the dot product.
Part 3: Cross Product #1. Explanation of and justification for what the cross product actually is, something you will find nowhere else on the internet.
Part 4: Cross Product #2. Proof that the cross product returns a vector perpendicular to the plane containing the two vectors. Something you will find nowhere else on the internet.
Part 5: Cross Product #3. Proof that the cross product returns a vector with magnitude equal to the area of the parallelogram inscribed by the two vectors.
Part 6: Equation of a Plane. Brief explanation of the equation of a plane and the vector normal to a plane.
Part 7: Projective Plane and Homogeneous Coordinates.

Please leave any questions, comments, or suggestions in the comments below!

The next videos after these will be:
#4.3 Elliptic Curves over Complex Numbers
#5. Then a very basic overview of Modular Forms, so he have a basic comprehension of what they are as well.
#6. With a basic understanding of Elliptic Curves and Modular Forms, I will give you a brief history of the proof, then my basic understanding of Wiles' proof--how does Taniyama-Shimura (every Elliptic Curve is a Modular Form) imply Fermat's Last Theorem. (This will be the culmination of these first five videos. I think this video will already do a better job of explaining Wiles' proof in basic terms than any currently on youtube.)

Please subscribe and support these videos on patreon:   / greg55666  

(Please join me on patreon. It only costs a dollar, and we have a long way to go to a complete understanding of the proof of Fermat's Last Theorem!)

The math in this video was learned in part from two videos by Norman Wildberger.    • Projective geometry and homogeneous coordi...   and    • Lines and planes in projective geometry | ...  

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Projective Plane and Homogeneous Coordinates - FLT Proof #4.1.2.5

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Proof of Fermat's Last Theorem Intro #4.2 - Group Law for Elliptic Curves over Rational Numbers

Proof of Fermat's Last Theorem Intro #4.2 - Group Law for Elliptic Curves over Rational Numbers

Homogeneous Coordinates (Cyrill Stachniss, 2020)

Homogeneous Coordinates (Cyrill Stachniss, 2020)

The circle and projective homogeneous coordinates | Universal Hyperbolic Geometry 7a | NJ Wildberger

The circle and projective homogeneous coordinates | Universal Hyperbolic Geometry 7a | NJ Wildberger

PGA Ep 1: The Reflection Menace

PGA Ep 1: The Reflection Menace

Перспективный взгляд на алгебраические кривые

Перспективный взгляд на алгебраические кривые

The two points that lie on every circle (???)  #SoME3

The two points that lie on every circle (???) #SoME3

Edward Teller - Discovering an interest in projective geometry (8/147)

Edward Teller - Discovering an interest in projective geometry (8/147)

A Swift Introduction to Projective Geometric Algebra

A Swift Introduction to Projective Geometric Algebra

The Klein bottle and projective plane | Algebraic Topology 7 | NJ Wildberger

The Klein bottle and projective plane | Algebraic Topology 7 | NJ Wildberger

Однородные координаты — 5 минут с Кириллом

Однородные координаты — 5 минут с Кириллом

Crack Homogeneous Coordinates In 4 Animations

Crack Homogeneous Coordinates In 4 Animations

Что такое...системы Штайнера?

Что такое...системы Штайнера?

Computer Vision: The Camera Matrix

Computer Vision: The Camera Matrix

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Homogeneous Coordinates Part 1

Homogeneous Coordinates Part 1

Real Projective Space, n=1

Real Projective Space, n=1

A Swift Introduction to Spacetime Algebra

A Swift Introduction to Spacetime Algebra

Projective geometry | Math History | NJ Wildberger

Projective geometry | Math History | NJ Wildberger

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

А что если найти среднюю длину эллипса?

А что если найти среднюю длину эллипса?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]