ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lesson 6: Network Algorithms and Approximations by Mohammad Hajiaghayi: Embedding Tree Applications

Автор: Mohammad Hajiaghayi

Загружено: 2025-01-15

Просмотров: 104

Описание: In this session, we talk about several applications of probabilistic embedding into trees.
We first focus on the Steiner tree problem, a fundamental network design problem with applications in various fields. The Steiner tree problem involves finding a minimum-cost tree that connects a given set of terminals (vertices) in a graph, potentially including additional vertices called Steiner points. The session discusses the importance of the Steiner tree problem and its relevance to other network design problems.  

The session also covers the concept of probabilistic embedding into trees, a technique used to simplify network problems by approximating graph metrics with tree metrics. This approach involves embedding the graph into a distribution of trees and solving the problem on each tree, taking the minimum solution as the final result. The session discusses the benefits and limitations of this approach, particularly for the Steiner tree problem.  

The session also touches on the concept of useless edges, which can be removed from the graph without affecting the solution, and the importance of considering spanning trees for connectivity problems. It also discusses the use of pre-processing techniques to simplify the graph before applying the probabilistic embedding approach.  

Overall, the session provides a comprehensive overview of the Steiner tree problem and its connection to probabilistic embedding into trees. It highlights the challenges and opportunities in solving network design problems using tree embedding techniques.  

#steinertree, #networkdesign, #graphembedding, #treeembedding, #probabilisticembedding, #spanningtrees, #approximationalgorithms, #connectivityproblems, #uselessedges, #preprocessing, #optimization, #combinatorialoptimization, #graphalgorithms

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lesson 6: Network Algorithms and Approximations by Mohammad Hajiaghayi: Embedding Tree Applications

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Lesson 1: Network Algorithms and Approximations by Mohammad Hajiaghayi: Introduction and Set Cover

Lesson 1: Network Algorithms and Approximations by Mohammad Hajiaghayi: Introduction and Set Cover

12. Greedy Algorithms: Minimum Spanning Tree

12. Greedy Algorithms: Minimum Spanning Tree

Lesson 8: Network Algorithms and Approximations by Mohammad Hajiaghayi: Network Design Problems

Lesson 8: Network Algorithms and Approximations by Mohammad Hajiaghayi: Network Design Problems

Lesson 16: Network Algorithms and Approximations by Mohammad Hajiaghayi: Simplifying Decompositions

Lesson 16: Network Algorithms and Approximations by Mohammad Hajiaghayi: Simplifying Decompositions

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Word Embedding and Word2Vec, Clearly Explained!!!

Word Embedding and Word2Vec, Clearly Explained!!!

How Not to Prove the Collatz Conjecture

How Not to Prove the Collatz Conjecture

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Prim's Minimum Spanning Tree Algorithm | Graph Theory

Prim's Minimum Spanning Tree Algorithm | Graph Theory

Lesson 7: Network Algorithms and Approximations by Mohammad Hajiaghayi: FRT Embeddings into Trees

Lesson 7: Network Algorithms and Approximations by Mohammad Hajiaghayi: FRT Embeddings into Trees

Дефицит памяти уже достал. Был ли сговор? Когда все подешевеет? И при чем тут NVIDIA?

Дефицит памяти уже достал. Был ли сговор? Когда все подешевеет? И при чем тут NVIDIA?

Артем Шрайбман: почему Лукашенко отпустил Бабарико, Колесникову и других знаковых заключенных?

Артем Шрайбман: почему Лукашенко отпустил Бабарико, Колесникову и других знаковых заключенных?

Word Embedding in PyTorch + Lightning

Word Embedding in PyTorch + Lightning

Ariana Grande, Mariah Carey, Justin Bieber, Christmas Songs Christmas Songs Playlist 2026

Ariana Grande, Mariah Carey, Justin Bieber, Christmas Songs Christmas Songs Playlist 2026

Программа «Статус» с Екатериной Шульман и Максимом Курниковым | 16.12.2025

Программа «Статус» с Екатериной Шульман и Максимом Курниковым | 16.12.2025

3.5 Prims and Kruskals Algorithms - Greedy Method

3.5 Prims and Kruskals Algorithms - Greedy Method

Algorithmically Simplifying Graph  Decomposition via Bidimensionality

Algorithmically Simplifying Graph Decomposition via Bidimensionality

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Lesson 24: Network Algorithms and Approximations by Mohammad Hajiaghayi:Steiner Tree (Peyman Jabbar)

Lesson 24: Network Algorithms and Approximations by Mohammad Hajiaghayi:Steiner Tree (Peyman Jabbar)

Lesson 17: Network Algorithms and Approximations by Mohammad Hajiaghayi: Network Streaming

Lesson 17: Network Algorithms and Approximations by Mohammad Hajiaghayi: Network Streaming

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]