Vectorial Clase #24: Campos vectoriales, Divergencia, Rotacional, Campos conservativos
Автор: misclasesconfermadrid
Загружено: 2020-11-27
Просмотров: 29004
Описание:
Para ver las clases ordenadas por temas CLIC AQUÍ: https://misclasesconfermadrid.blogspo...
CONTENIDO DEL VIDEO: Campos vectoriales, Divergencia, Rotacional, Campos conservativos
recordando funciones escalares, haz clic aquí: 1:17
Definición de campo vectorial, haz clic aquí: 2:34
Notaciones en 2D y en 3D, haz clic aquí: 7:47
Ejemplo de representación gráfica en D2, haz clic aquí: 11:13
Representación gráfica en Geogebra de un campo en 2D, haz clic aquí: 21:55
Enlace para ver un campo en 2D con el Geogebra: https://www.geogebra.org/m/kteyw9fq
Ejemplo de representación gráfica en 3D, haz clic aquí: 28:26
Representación gráfica en Geogebra de un campo en 3D, haz clic aquí: 33:34
Enlace para ver un campo en 3D con el Geogebra: https://www.geogebra.org/m/qgzyyfmp
Operaciones de campos con el operador nabla, haz clic aquí: 37:25
Divergencia de un campo vectorial, haz clic aquí: 41:50
Rotacional de un campo vectorial, haz clic aquí: 48:09
Ejemplo para calcular la divergencia y el Rotacional, haz clic aquí: 53:01
Campos conservativos, haz clic aquí: 01:09:31
Definición de función potencial, haz clic aquí: 01:11:26
Ejemplo 1 para calcular la función potencial, haz clic aquí: 01:13:22
Ejemplo 2 para calcular la función potencial, haz clic aquí: 01:31:00
#misclasesconfermadrid #CalculoVectorial
Encuentra todas las clases y videos disponibles de manera ordenada en https://misclasesconfermadrid.blogspo...
Sígueme en Facebook en / misclasesconfermadrid
Resumen del contenido de análisis vectorial:
Bienvenido a mi curso introductorio al análisis vectorial. El análisis vectorial o cálculo vectorial es un campo de las matemáticas referido al estudio de vectores en 2 o más dimensiones, desde un punto de vista del Cálculo diferencial e integral… mediante un conjunto de fórmulas y técnicas para solucionar problemas muy útiles para la ingeniería y la física. Cuatro operaciones son importantes en el análisis vectorial, que son: el gradiente, la divergencia, el rotacional y el laplaciano, operaciones que iremos introduciendo en este curso. Los temas que trataremos en el Curso son: funciones vectoriales o campos vectoriales, curvas paramétricas - integral de línea, superficies paramétricas - integral de superficie o integral de flujo, teorema de la divergencia o teorema de Gauss, teorema del rotacional o teorema de Stokes, teorema de Green.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: