ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

STSW01 | Gareth Roberts | The zig-zag and super-efficient sampling for Bayesian analysis of big data

Автор: INI Seminar Room 1

Загружено: 2025-12-15

Просмотров: 5

Описание: STSW01 | Prof. Gareth Roberts | The zig-zag and super-efficient sampling for Bayesian analysis of big data

Speaker: Professor Gareth Roberts (University of Warwick)
Date: 15th Jan 2018 - 16:10 to 16:55
Venue: INI Seminar Room 1
Title: The zig-zag and super-efficient sampling for Bayesian analysis of big data
Event: (STSW01) Theoretical and algorithmic underpinnings of Big Data
Abstract: Standard MCMC methods can scale poorly to big data settings due to the need to evaluate the likelihood at each iteration. There have been a number of approximate MCMC algorithms that use sub-sampling ideas to reduce this computational burden, but with the drawback that these algorithms no longer target the true posterior distribution. The talk will discuss a new family of Monte Carlo methods based upon a multi-dimensional version of the Zig-Zag process of (Bierkens, Roberts, 2016), a continuous time piecewise deterministic Markov process. While traditional MCMC methods are reversible by construction the Zig-Zag process offers a flexible non-reversible alternative. The dynamics of the Zig-Zag process correspond to a constant velocity model, with the velocity of the process switching at events from a point process. The rate of this point process can be related to the invariant distribution of the process. If we wish to target a given posterior distribution, then rates need to be set equal to the gradient of the log of the posterior. Unlike traditional MCMC, Zig-Zag process can be simulated without discretisation error, and give conditions for the process to be ergodic. Most importantly, I will discuss two generalisations which have good scaling properties for big data: firstly a sub-sampling version of the Zig-Zag process that is an example of an exact approximate scheme; and secondly a control-variate variant of the sub-sampling idea to reduce the variance of our unbiased estimator. Very recent ergodic theory will also be described.

-------------------

FOLLOW US
🌐| Website: https://www.newton.ac.uk
🎥| Main Channel:    / @isaacnewtoninstitute  
🐦| Twitter:   / newtoninstitute  
💬| Facebook:   / newton.institute  
📷| Instagram:   / isaacnewtoninstitute  
🔗| LinkedIn:   / isaac-newton-institute-for-mathematical-sc...  

SEMINAR ROOMS
🥇| INI Seminar Room 1:    / @iniseminarroom1  
🥈| INI Seminar Room 2:    / @iniseminarroom2  
🛰️| INI Satellite Events:    / @inisatellite  

ABOUT
The Isaac Newton Institute is a national and international visitor research institute. It runs research programmes on selected themes in mathematics and the mathematical sciences with applications over a wide range of science and technology. It attracts leading mathematical scientists from the UK and overseas to interact in research over an extended period.

👉 Learn more about us and our events here: https://www.newton.ac.uk

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
STSW01 | Gareth Roberts | The zig-zag and super-efficient sampling for Bayesian analysis of big data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Statistical Rethinking 2026 - Lecture A01 - Introduction to Bayesian Workflow

Statistical Rethinking 2026 - Lecture A01 - Introduction to Bayesian Workflow

Prof. Victor Chernozhukov | Adventures in Demand Analysis Using AI

Prof. Victor Chernozhukov | Adventures in Demand Analysis Using AI

PyDMD: пакет Python для динамического разложения по модам (DMD)

PyDMD: пакет Python для динамического разложения по модам (DMD)

Prof. Tobias Fritz | Markov categories and the inflation technique for latent-variable causal inf...

Prof. Tobias Fritz | Markov categories and the inflation technique for latent-variable causal inf...

Prof. Ilya Shpitser | Identification is easy, factorization is hard

Prof. Ilya Shpitser | Identification is easy, factorization is hard

Нейросети захватили соцсети: как казахстанский стартап взорвал все AI-тренды и стал единорогом

Нейросети захватили соцсети: как казахстанский стартап взорвал все AI-тренды и стал единорогом

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

When a math trick turns out to be real

When a math trick turns out to be real

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

Cybersecurity Architecture: Five Principles to Follow (and One to Avoid)

Cybersecurity Architecture: Five Principles to Follow (and One to Avoid)

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

How AI Cracked the Protein Folding Code and Won a Nobel Prize

How AI Cracked the Protein Folding Code and Won a Nobel Prize

Think Faster, Talk Smarter with Matt Abrahams

Think Faster, Talk Smarter with Matt Abrahams

Politics Chat, January 27, 2026

Politics Chat, January 27, 2026

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Понимание GD&T

Понимание GD&T

Cybersecurity Architecture: Networks

Cybersecurity Architecture: Networks

A Theory of the Mechanics of Information - Christopher Hazard

A Theory of the Mechanics of Information - Christopher Hazard

There Is Something Faster Than Light

There Is Something Faster Than Light

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]