ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

Автор: Inside Livermore Lab

Загружено: 2023-05-08

Просмотров: 9259

Описание: We will present exciting developments in the use of AI for scientific applications. This includes diverse domains such as weather and climate modeling, deep earth modeling, etc. We have developed principled approaches that enables zero-shot generalization beyond the training domain. This includes neural operators that yield 4-5 orders of magnitude speedups over numerical weather models and other scientific simulations. They learn mappings between function spaces that makes them ideal for capturing multi-scale processes.

Bio: Anima Anandkumar is a Bren Professor at Caltech and Director of ML Research at NVIDIA. She was previously a Principal Scientist at Amazon Web Services. She has received several honors such as Alfred. P. Sloan Fellowship, NSF Career Award, Young investigator awards from DoD, and Faculty Fellowships from Microsoft, Google, Facebook, and Adobe. She is part of the World Economic Forum's Expert Network. She is passionate about designing principled AI algorithms and applying them in interdisciplinary applications. Her research focus is on unsupervised AI, optimization, and tensor methods.

DDPS webinar: https://www.librom.net/ddps.html

💻 LLNL News: https://www.llnl.gov/news
📲 Instagram:   / livermore_lab  
🤳 Facebook:   / livermore.lab  
🐤 Twitter:   / livermore_lab  
🔔 Subscribe: / livermorelab

About LLNL: Lawrence Livermore National Laboratory has a mission of strengthening the United States’ security through development and application of world-class science and technology to: 1) enhance the nation’s defense, 2) reduce the global threat from terrorism and weapons of mass destruction, and 3) respond with vision, quality, integrity and technical excellence to scientific issues of national importance. Learn more about LLNL: https://www.llnl.gov/.

LLNL-VIDEO-848789

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

DDPS | ML-driven Models for Material Microstructure and Mechanical Behavior by Lori Graham Brady

DDPS | ML-driven Models for Material Microstructure and Mechanical Behavior by Lori Graham Brady

Physics-Informed AI Series | Scale-consistent Learning with Neural Operators

Physics-Informed AI Series | Scale-consistent Learning with Neural Operators

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

CGSR | The Dawn of Big Science in China

CGSR | The Dawn of Big Science in China

ORBAN traci GRUNT, a UNIA przyznaje się do SŁABOŚCI! (Szczyt w Monachium) #BizWeek

ORBAN traci GRUNT, a UNIA przyznaje się do SŁABOŚCI! (Szczyt w Monachium) #BizWeek

Operator Learning: From Theory to Practice

Operator Learning: From Theory to Practice

DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

Самый важный алгоритм в машинном обучении

Самый важный алгоритм в машинном обучении

Почему цены растут так быстро? Что будет с зарплатами? Отвечает экономист Григорий Баженов/ 18.02.26

Почему цены растут так быстро? Что будет с зарплатами? Отвечает экономист Григорий Баженов/ 18.02.26

Zongyi Li's talk on solving PDEs from data

Zongyi Li's talk on solving PDEs from data

FULL DISCUSSION: Google's Sundar Pichai, Demis Hassabis Debate AI, India Impact, Job Market | AI1G

FULL DISCUSSION: Google's Sundar Pichai, Demis Hassabis Debate AI, India Impact, Job Market | AI1G

AI can't cross this line and we don't know why.

AI can't cross this line and we don't know why.

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

But what is a partial differential equation?  | DE2

But what is a partial differential equation? | DE2

NeurIPS 2020 Tutorial: Deep Implicit Layers

NeurIPS 2020 Tutorial: Deep Implicit Layers

ODE | Neural Ordinary Differential Equations - Best Paper Awards NeurIPS

ODE | Neural Ordinary Differential Equations - Best Paper Awards NeurIPS

Equivariant Neural Networks (SGP Graduate School 2024)

Equivariant Neural Networks (SGP Graduate School 2024)

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]