PE Org AI R Platform – Financial Grade AI Scoring Engine Case Study 3
Автор: Piyush Kunjilwar
Загружено: 2026-02-20
Просмотров: 20
Описание:
We demonstrate the design, implementation, and validation of the PE Org-AI-R Financial-Grade AI Scoring Engine — a configuration-driven, sector-calibrated AI Readiness scoring system built for Private Equity portfolio evaluation.
This case study transforms structured evidence (SEC filings, job signals, innovation signals, digital presence, leadership data) into a reproducible, auditable, and risk-adjusted AI Readiness score.
🔹 Project Highlights:
• Configuration-driven architecture (no hardcoded weights)
• Unified schema supporting 7 sectors × 7 dimensions
• Financial-grade Decimal precision (no floating-point risk)
• Non-compensatory statistical penalty using Coefficient of Variation
• Talent concentration risk adjustment (HHI-style penalty)
• Redis-backed configuration caching (1ms retrieval)
• Temporal weight versioning with rollback capability
• Property-based testing (Hypothesis) for invariants
• Sensitivity analysis and monotonicity validation
• Structured JSON logging (audit-ready replayability)
• Confidence Intervals using Spearman-Brown reliability modeling
• Strict clamping and bounded outputs [0–100]
🔹 Scoring Framework Overview:
The VR (Idiosyncratic Readiness) Engine:
VR = Dw × (1 − λ · cvD) × TalentRiskAdj
Where:
• Dw = Weighted Mean of 7 dimensions
• cvD = Coefficient of Variation (dispersion penalty)
• TalentRiskAdj = Key-person risk multiplier
Org-AI-R Aggregation:
Org-AI-R = (1 − β)[αVR + (1 − α)HR] + β × Synergy
Includes:
• Position-based HR adjustment
• Alignment and timing multipliers
• Dynamic Confidence Intervals
• Reliability-adjusted uncertainty modeling
🔹 Architecture Stack:
• FastAPI (API layer)
• Pydantic (data validation)
• Snowflake (production data warehouse)
• PostgreSQL (dev environment)
• SQLAlchemy 2.0 (async ORM)
• Redis (configuration caching)
• Alembic (schema migrations)
• Decimal-based financial arithmetic
• Hypothesis (property-based testing)
• structlog (audit logging)
🔹 Case Study Scope:
This submission covers:
• Dimension scoring engine implementation
• Configuration loading and weight calibration
• Redis caching layer integration
• Financial-grade precision controls
• Statistical penalty modeling
• Reliability-based uncertainty quantification
• Robust testing strategy (unit + property testing)
• Sensitivity analysis
• End-to-end scoring validation
🔹 Course Information:
Course: DAMG 7245 – Big Data Systems & Intelligent Analytics
Instructor: Prof. Sri Krishnamurthy
Term: Spring 2026
Group: 1
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: