Monica Nevins: Why p-adic numbers are better than real for representation theory.
Автор: Centre de recherches mathématiques - CRM
Загружено: 2024-01-24
Просмотров: 1201
Описание:
(19 janvier 2024/January 19, 2024) Colloque des sciences mathématiques du Québec/CSMQ. https://www.crmath.ca/en/activities/#...
Monica Nevins: Why p-adic numbers are better than real for representation theory.
Abstract: The p-adic numbers, discovered over a century ago, unveil aspects of number theory that the real numbers alone can’t. In this talk, we introduce p-adic fields and their fractal geometry, and then apply this to the (complex!) representation theory of the p-adic group SL(2). We describe a surprising conclusion: that close to the identity, all representations are a sum of finitely many rather simple building blocks arising from nilpotent orbits in the Lie algebra.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: