ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lecture 4 : Understanding Number Theory and Maths Concepts | Competitive Programming

competitive programming

number theory

programming

do you take number theory classes for competitive programming?

should you take a number theory class for competitive programming

should you take a number theory class for competitive programming?

number theory lecture series

online programming courses

how to start competitive programming

what is competitive programming

do you have to take a number theory class for competitive programming?

learn programming online

Автор: College Wallah

Загружено: 2025-01-14

Просмотров: 21664

Описание: Use "DSA20" To Get Extra 20% Off On All Decode Batches
Want to Get Enrolled in Decode Batches? Enroll Now-https://pwskills.com/category/program...

Lecture 4 delves into the fundamentals of number theory and key mathematical concepts essential for competitive programming. It covers topics like prime numbers, divisibility rules, modular arithmetic, and gcd (greatest common divisor), providing a strong foundation for solving algorithmic problems efficiently. This lecture equips learners with the mathematical tools to approach challenges with confidence.

Video Timestamps:-
00:00:00 Introduction
00:02:20 What is Number Theory?
00:03:00 Today’s Agenda
00:04:55 Prime Numbers
00:18:00 Finding factors of a Number
00:29:05 Checking Prime Number in Efficient Time
00:31:45 Sieve of Eratosthenes
00:53:00 Time Complexity of Sieve of Eratosthenes
00:56:00 Why Sieve is Better?
01:01:20 Problem A - Primes
01:10:20 Problem B - Prefix Sum Primes
01:23:25 Problem C - Factorise N+M
01:30:30 Problem D - Prime Deletion
01:38:30 Problem E - Prime Substraction
01:45:35 Modular Arithmetic
01:54:54 Binary Exponentiation
02:11:55 Modular Exponentiation
02:20:35 Problem F - Modular Exponentiation
02:36:35 GCD - Greatest Common Divisor
02:43:00 Euclidean Algorithm
02:56:00 LCM - Lowest Common Multiple
03:01:50 Problem G - LCM Problem
03:11:05 Problem H - GCD vs LCM
03:17:30 Problem I - Madoka and Strange Thoughts
03:26:45 Finding Factorial of a Number
03:30:20 Finding value of nCr
03:40:40 Problem J - Password
03:48:50 Problem K - Required Remainder
03:58:20 Conclusion

Resources:

Sieve of Eratosthenes: https://cp-algorithms.com/algebra/sie...
Euclidean algorithm: https://cp-algorithms.com/algebra/euc...
Time Complexity of Euclid’s Algorithm: https://www.baeldung.com/cs/euclid-ti...
nCr: https://cp-algorithms.com/combinatori...
Binary Exponentiation: https://cp-algorithms.com/algebra/bin...

Problems Solved:

B. Primes: https://codeforces.com/problemset/gym...
A. Prefix Sum Primes: https://codeforces.com/problemset/pro...
A. Factorise N+M: https://codeforces.com/problemset/pro...
A. Prime Deletion: https://codeforces.com/problemset/pro...
A. Prime Subtraction: https://codeforces.com/problemset/pro...
A. Modular Exponentiation: https://codeforces.com/problemset/pro...
A. LCM Problem: https://codeforces.com/problemset/pro...
A. Required Remainder: https://codeforces.com/problemset/pro...
A. GCD vs LCM: https://codeforces.com/problemset/pro...
A. Password: https://codeforces.com/problemset/pro...
A. Madoka and Strange Thoughts: https://codeforces.com/problemset/pro...

Lecture 4 : Understanding Number Theory and Maths Concepts | Competitive Programming

#NumberTheory #CompetitiveProgramming #Mathematics #GCD #ModularArithmetic #PrimeNumbers #Algorithms

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lecture 4 : Understanding Number Theory and Maths Concepts | Competitive Programming

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]