Maximum Likelihood Estimation (MLE) & Likelihood Function Explained | B.Sc. Statistics Tutorial
Автор: Maths Perfection
Загружено: 2025-08-01
Просмотров: 57
Описание:
Unlock the power of Maximum Likelihood Estimation (MLE)—one of the most important tools in statistical inference! In this video we break down:
1. The Likelihood Function – intuitive meaning & formal definition
2. Deriving the MLE – step-by-step method, with calculus refresher
3. Worked Examples – Binomial, Poisson & Normal distributions
4. Key Properties – consistency, efficiency & asymptotic normality
5. Common Pitfalls – boundary solutions, non-unique estimates
6. Quick Quiz & PDF Notes – test yourself and download revision sheets
Designed for B.Sc. Maths/Stats students and CDS aspirants, the lesson balances theory with problem-solving strategies that appear in university exams and competitive tests alike.
(छोटा नोट: अंत में Q&A session है—miss मत करना!)
Watch the full Special Theory of Relativity playlist here ➡️ [link]
Subscribe & hit the 🔔 so you never miss a lesson!
---
🔑 Related Keywords
Maximum Likelihood Estimation, MLE, likelihood function, statistical inference, parameter estimation, B.Sc. Statistics, CDS exam maths, binomial example MLE, Poisson distribution MLE, normal distribution estimation, consistency of estimators, efficiency of MLE, asymptotic normality, log-likelihood, Newton-Raphson method, statistics tutorial in English, Soni Statistics channel, Hindi maths statistics, Unit 2 estimation methods, likelihood ratio test, hypothesis testing MLE, probability and statistics lecture
---
#️⃣ Hashtags
#MaximumLikelihood #LikelihoodFunction #StatisticsTutorial #BScMaths #CDSPreparation
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: