ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Converting iloc from Pandas to PySpark DataFrame

How to convert the expression iloc from pandas to Pyspark Dataframe?

python

pandas

pyspark

Автор: vlogize

Загружено: 2025-05-26

Просмотров: 0

Описание: Discover how to seamlessly convert the `iloc` expression from Pandas to PySpark DataFrame, ensuring efficient data manipulation in your Spark applications.
---
This video is based on the question https://stackoverflow.com/q/66191466/ asked by the user 'insses06 06' ( https://stackoverflow.com/u/14872985/ ) and on the answer https://stackoverflow.com/a/66192363/ provided by the user 'blackbishop' ( https://stackoverflow.com/u/1386551/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to convert the expression iloc from pandas to Pyspark Dataframe?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting iloc from Pandas to PySpark DataFrame: A Comprehensive Guide

When working with data in Python, both Pandas and PySpark are popular libraries that help manage and analyze data. However, they have different methods for accessing and manipulating data in DataFrames. One common issue is converting Pandas expressions like iloc to their equivalents in PySpark, especially when it comes to working with large datasets in a distributed environment. In this guide, we will address how to convert the iloc expression from Pandas to a PySpark DataFrame effectively.

Understanding the Problem

Pandas' iloc method allows you to access specific rows and columns in a DataFrame by integer-location based indexing. For example:

[[See Video to Reveal this Text or Code Snippet]]

This can become tricky when switching to PySpark, which utilizes a different approach. You might encounter scenarios where the equivalent operation does not seem to work, making it essential to know how to replicate this functionality using PySpark's API.

Example DataFrame Structure

Let’s consider a simple DataFrame with the following structure:

idxType1Type21DC25.0null36.07.0Objective

Given this structure and a number N, the goal is to extract the last N rows from the DataFrame using PySpark, similar to how you would with Pandas' iloc.

The Solution

Approach 1: Filtering Based on Row Count

Assuming the column idx contains unique incremental values, you can achieve the desired outcome by filtering the DataFrame based on the count of rows. Here's how:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

df.count() returns the total number of rows in the DataFrame.

The filter condition keeps only those rows where idx is greater than the count of rows minus N. This effectively retrieves the last N rows.

Approach 2: Ordering and Limiting the Results

Another efficient way to access the last N rows is to order the DataFrame and limit the results:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

orderBy(F.desc("idx")) arranges the DataFrame in descending order based on the idx column.

limit(N) then allows us to take only the top N records, which, due to the ordering, will be the last N entries of the original DataFrame.

Approach 3: Finding Maximum Index

Lastly, you can also determine the maximum value of the idx column and filter based on that:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

agg(F.max("idx")) computes the maximum value in the idx column.

By filtering rows where idx exceeds the max_idx - N, you get the last N rows again.

Conclusion

Converting Pandas' iloc expression to PySpark is a manageable task once you understand the different access patterns and functions available in PySpark. Whether you choose to filter based on the total count, order the DataFrame, or calculate the maximum index, each approach lets you seamlessly manipulate your data across both platforms.

With Spark's growing popularity in big data processing, mastering these transitions could greatly enhance your data analysis toolkit. Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Converting iloc from Pandas to PySpark DataFrame

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Learning Pandas for Data Analysis? Start Here.

Learning Pandas for Data Analysis? Start Here.

threading vs multiprocessing in python

threading vs multiprocessing in python

Deep Focus Radio - Музыка для кодирования и производительности

Deep Focus Radio - Музыка для кодирования и производительности

Fourth of July Weekend Marathon!

Fourth of July Weekend Marathon!

У тебя есть n8n? Без этого расширения ты тратишь кучу времени!

У тебя есть n8n? Без этого расширения ты тратишь кучу времени!

How to combine DataFrames in Pandas | Merge, Join, Concat, & Append

How to combine DataFrames in Pandas | Merge, Join, Concat, & Append

Отмена рейсов, интернета и навигации | Как живёт Россия в условиях войны (English sub) @Max_Katz

Отмена рейсов, интернета и навигации | Как живёт Россия в условиях войны (English sub) @Max_Katz

Японец по цене ВАЗа! Оживляем пацанскую мечту :)

Японец по цене ВАЗа! Оживляем пацанскую мечту :)

Конец империи. Почему Ильхам Алиев пошел против Путина

Конец империи. Почему Ильхам Алиев пошел против Путина

Как мы делаем Yandex Cloud — Data Platform [New]

Как мы делаем Yandex Cloud — Data Platform [New]

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]