ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Exploring Data Virtualization vs. Data Import in Azure Synapse Analytics

Azure

Azure Synapse

Azure Data

Data Warehouse

Synapse Studio

Data Virtualization

Polybase

CTAS

SQLServer

Автор: Chris Seferlis

Загружено: 2020-11-30

Просмотров: 2584

Описание: 🔍 Azure Synapse Analytics offers powerful capabilities for querying and analyzing data, but how you connect to your data can make a big difference in performance. In this video, we explore the differences between data virtualization using PolyBase and importing data directly into Synapse. We'll compare query times and discuss the scenarios where each method shines.

*Join me as I dive into Azure Synapse, demonstrate key data connection techniques, and break down the best practices for optimizing your query performance.*

---

*🕒 Table of Contents:*
*00:00 - Introduction and Overview*
Introduction to the video blog, focusing on Azure Synapse Analytics and its data querying capabilities.
*00:39 - Setting Up the Synapse Workspace*
Overview of the Synapse workspace, with a focus on the sample data set (City Safety Boston) and the options available for querying data.
*01:16 - Data Virtualization vs. Data Import*
Explanation of the difference between creating an external table and directly querying data stored in Azure Blob Storage.
*02:03 - Query Execution Time Comparison*
Comparison of query times for selecting data from the external table vs. querying directly from Azure Blob Storage.
*02:54 - Data Storage and Formats*
Discussion on data formats supported by Azure Synapse (Parquet, ORC, CSV, and text) and the importance of schema information.
*03:48 - How Synapse Connects to Data*
Explanation of how Synapse connects to data stored in Azure Data Lake using SQL engine commands and data virtualization.
*04:32 - Importing Data into Synapse*
Steps to improve query performance by importing data into the Synapse SQL provisioned database using COPY or CTAS statements.
*05:14 - Data Virtualization Techniques*
Exploring the use of PolyBase and OpenRowSet for connecting to external data sources within Synapse.
*05:44 - Closing Remarks and Viewer Engagement*
Final thoughts on data connection methods in Synapse, appreciation for viewer support, and encouragement to engage with the content.

---

*🎯 Key Takeaways:*
1. **Data Virtualization vs. Import**: Understand the differences between querying data externally via data virtualization and importing it directly into Azure Synapse for better performance.
2. **Performance Insights**: Explore the impact of different data connection techniques on query performance and learn when to use each method.
3. **Best Practices**: Learn best practices for optimizing data queries in Synapse, including using specific data formats and commands.

*💬 Join the Discussion:*
Have you tried using data virtualization or direct import in Azure Synapse? Share your experiences or ask any questions in the comments below! Let’s discuss the best strategies for efficient data querying in Synapse.

*📢 Don’t forget to like, comment, share, and subscribe for more insights into Azure data solutions and professional development tips!*

*Check Out My Book on Amazon:*
Practical Guide to Azure Cognitive Services: https://a.co/d/5PiXIzH 📘

*Connect with Me:*
LinkedIn: linkedin.com/in/cseferlis 🔗
X: x.com/bizdataviz 🐦
Instagram: instagram.com/cseferlis 📸
Website: seferlis.com 🌐

#Azure #SynapseAnalytics #DataVirtualization #PolyBase #BigData #CloudComputing

---

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Exploring Data Virtualization vs. Data Import in Azure Synapse Analytics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]