ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

9. Lagrangian Duality and Convex Optimization

machine learning

machine learning jobs

applications of machine learning

David Rosenberg

machine learning engineering jobs

bloomberg careers

mathematics

python

Lagrangian Duality and Convex Optimization

Автор: Inside Bloomberg

Загружено: 2018-07-11

Просмотров: 72218

Описание: We introduce the basics of convex optimization and Lagrangian duality. We discuss weak and strong duality, Slater's constraint qualifications, and we derive the complementary slackness conditions. As far as this course is concerned, there are really only two reasons for discussing Lagrangian duality: 1) The complementary slackness conditions will imply that SVM solutions are "sparse in the data" (next lecture), which has important practical implications for the kernelized SVMs (see the kernel methods lecture). 2) Strong duality is a sufficient condition for the equivalence between the penalty and constraint forms of regularization (see Hwk 4 Problem 8).

This mathematically intense lecture may be safely skipped.

Access the full course at https://bloom.bg/2ui2T4q

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
9. Lagrangian Duality and Convex Optimization

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Karush–Kuhn–Tucker (KKT)  Conditions and the Interior Point Method for Convex Optimization

The Karush–Kuhn–Tucker (KKT) Conditions and the Interior Point Method for Convex Optimization

Convex Optimization and Applications - Stephen Boyd

Convex Optimization and Applications - Stephen Boyd

Constrained Optimization: Intuition behind the Lagrangian

Constrained Optimization: Intuition behind the Lagrangian

Convex Optimization Basics

Convex Optimization Basics

Duality: Lagrangian and dual problem

Duality: Lagrangian and dual problem

3-HOUR DEEP WORK SESSION | Hyper Efficient, Focus Music, Pomodoro 50-10

3-HOUR DEEP WORK SESSION | Hyper Efficient, Focus Music, Pomodoro 50-10

Dimitri Bertsekas, Convex Optimization: A Journey of 60 Years, Lecture at MIT

Dimitri Bertsekas, Convex Optimization: A Journey of 60 Years, Lecture at MIT

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Understanding Lagrange Multipliers Visually

Understanding Lagrange Multipliers Visually

What Is Mathematical Optimization?

What Is Mathematical Optimization?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]