ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Python Tutorial: Introduction to pandas for marketing

PythonTutorial

pandas

marketing

DataCamp

Python

Автор: DataCamp

Загружено: 2020-03-10

Просмотров: 1440

Описание: Want to learn more? Take the full course at https://learn.datacamp.com/courses/an... at your own pace. More than a video, you'll learn hands-on coding & quickly apply skills to your daily work.

---
Welcome to the course! My name is Jill Rosok, and in this course, you will learn about how Data Science techniques are used to understand the impact of marketing campaigns.

My hope is that this course will not only help to reinforce your Python and pandas abilities but also help understand what kinds of problems data scientists on marketing teams might encounter.

While the possibilities are endless, there are a few types of projects that will almost certainly come up in a marketing team.

You will likely be asked how a marketing campaign performed. Marketing campaigns mean anything that required the marketing team to put in work to promote your product. It could be a new creative direction, a discounted product, targeting a specific demographic or a multitude of other options.

Another common question is how different marketing channels are performing. For example, when you send out an email how many new users subscribe? Given current conversion rates and revenue, should you continue investing in this channel and how much should you spend?

Another common practice in marketing is running experiments, or A/B tests, to try to understand the impact of a particular change.

All of these types of questions can intersect. You could analyze a marketing campaign by channel based on A/B test results, or you could tackle any one of these types of questions individually.

First, let me give you a quick refresher on pandas.

Hopefully, you've completed DataCamp's foundational pandas courses, but as a reminder, pandas makes data analysis and transformation in Python much easier by formatting the data into a table-like structure similar to an Excel spreadsheet.

Pandas makes it easy to import and export common data formats. Once your data is imported, you can adapt your dataset to work for your analysis, including aggregations, merging multiple datasets, and selecting subsets of data that fit specific criteria.

To use pandas, first import pandas using the alias pd.

To import a CSV file, you can use the read_csv() function and pass the name of the file you want to import.

Once you've imported your data, it is a good practice to examine its contents using the head() method. This will return the first five rows of the DataFrame.

Use the describe() method to print the statistics of all columns in your dataset. You can inspect the output to find some obvious errors. For example, if you see negative values in a date column, this might indicate an error. In addition, pay careful attention to the minimum and maximum values. If the maximum is much larger than the median, it might be an outlier and merit further investigation.

Finally, you can identify the data types and the number of non-missing values in your DataFrame using the info() method. The result includes all columns and their data types.

Now that you have a high-level understanding of pandas and data science in marketing let's practice combining these two skills!

#PythonTutorial #pandas #marketing #DataCamp #Python

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Python Tutorial: Introduction to pandas for marketing

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

All Machine Learning algorithms explained in 17 min

All Machine Learning algorithms explained in 17 min

Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)

Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)

End-to-End Data Project | DataCamp Project | Python Project for Data Analysis | Netflix Data Project

End-to-End Data Project | DataCamp Project | Python Project for Data Analysis | Netflix Data Project

Analyzing Ultrasound Data With Hugging Face

Analyzing Ultrasound Data With Hugging Face

Comedy Club: Курсы альфа-самца | Кравец, Шальнов, Бутусов @ComedyClubRussia

Comedy Club: Курсы альфа-самца | Кравец, Шальнов, Бутусов @ComedyClubRussia

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Гуманитарии сломали числа

Гуманитарии сломали числа

Похудей на 45 КГ, Выиграй $250,000!

Похудей на 45 КГ, Выиграй $250,000!

Python Machine Learning Tutorial (Data Science)

Python Machine Learning Tutorial (Data Science)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]