Module 5 –Model Evaluation | KTU FDS | Confusion Matrix, Precision, Recall, ROC & Boosting Explained
Автор: Edutown
Загружено: 2025-11-11
Просмотров: 6
Описание:
Welcome to Module 5 of the Foundation of Data Science (KTU Syllabus)! 🎓
In this final module, we explore how to evaluate and improve model performance — the key step to ensure your data science models are accurate, reliable, and ready for real-world use.
📚 Topics Covered (KTU Module 5):
✅ Evaluating Model Performance
Confusion Matrix
Precision & Recall
Sensitivity & Specificity
F-Measure
ROC Curves
Cross Validation
K-Fold Cross Validation
Bootstrap Sampling
✅ Improving Model Performance
Bagging
Boosting
Random Forests
💡 You’ll Learn:
How to measure a model’s accuracy and effectiveness
How metrics like precision, recall, and F1-score help in decision-making
The difference between training, testing, and validation
How ensemble methods like bagging and boosting enhance model stability
🧠 Ideal For:
KTU B.Tech students
Beginners in AI, ML, and Data Science
Anyone preparing for KTU exams, interviews, or mini projects
📺 Watch till the end to master the key evaluation metrics and model improvement techniques used by every data scientist!
💬 Don’t forget to like, share, and subscribe to Edutown for complete KTU-based Data Science module explanations.
#DataScience #KTUSyllabus #FDS #ModelEvaluation #KTU #AI #MachineLearning #ConfusionMatrix #PrecisionRecall #ROC #CrossValidation #Bagging #Boosting #RandomForest #Edutown
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: