10.21 Bessel’s Correction | Why n-1 in sample variance? | Statistics & Probability
Автор: Decode AiML
Загружено: 2025-10-05
Просмотров: 80
Описание:
In this video, we explore why we divide by (n–1) instead of n when calculating sample variance. You’ll understand the intuition behind Bessel’s Correction, how it removes bias in estimating population variance, and why it gives a more accurate measure of data spread. This Statistics & Probability playlist is also helpful for GATE DA/CS and other streams.
📌 Topics Covered in this Video:
1. Population vs Sample Variance – Explained Intuitively
2. Limitation of calculating variance using n
3. Introduction to Bessel’s Correction – Why do we need it?
4. Why we use (n–1) instead of n for computing sample variance
5. How Bessel’s Correction ensures an unbiased estimate of population variance
Helpful For:
1. Cracking AI / ML / Data Science interview rounds at top tech companies
2. Building a deeper understanding of core AI, ML concepts
3. Preparing for GATE (DA / CS / Other streams) and other related competitive exams
Our Playlist:
Probability & Statistics for ML - Hindi: • 10. Probability & Statistics for ML
#BesselsCorrection #SampleVariance #PopulationVariance #StatisticsInHindi #MachineLearning #StatisticsForML #InferentialStatistics #UnbiasedEstimator #WhyNMinus1 #DataScienceInHindi #StatisticsTutorial #statisticsforbeginners
Tags:
Bessel’s correction, why n - 1 in sample variance, sample variance vs population variance, statistics in hindi, population variance explained, sample variance explained, statistics for ml, population and sample variance, unbiased variance estimation
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: