ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

CIS Colloquium: Dr. Petar Veličković, Google DeepMind and University of Cambridge

Автор: Center for Intelligent Systems CIS EPFL

Загружено: 2023-06-01

Просмотров: 827

Описание: Abstract: Neural networks that are able to reliably execute algorithmic computation may hold transformative potential to both machine learning and theoretical computer science. On one hand, they could enable the kind of extrapolative generalisation scarcely seen with deep learning models. On another, they may allow for running classical algorithms on inputs previously considered inaccessible to them.

Over the past few years, the pace of development in this area has gradually become intense. As someone who has been very active in its latest incarnation, I have witnessed these concepts grow from isolated ‘toy experiments’, through NeurIPS spotlights, all the way to helping detect patterns in complicated mathematical objects (published on the cover of Nature) and supporting the development of generalist reasoning agents.

In this talk, I will give my personal account of this journey, and especially how our own interpretation of this methodology, and understanding of its potential, changed with time. It should be of interest to a general audience interested in graphs, (classical) algorithms, reasoning, and building intelligent systems.

Bio:
Petar is a Staff Research Scientist at DeepMind, an Affiliated Lecturer at the University of Cambridge, and an Associate of Clare Hall, Cambridge.

He holds a PhD in Computer Science from the University of Cambridge (Trinity College), obtained under the supervision of Pietro Liò. His research concerns geometric deep learning—devising neural network architectures that respect the invariances and symmetries in data (a topic he has co-written a proto-book about). For his contributions, he is recognised as an ELLIS Scholar in the Geometric Deep Learning Program. Particularly, he focuses on graph representation learning and its applications in algorithmic reasoning (featured in VentureBeat). He is the first author of Graph Attention Networks—a popular convolutional layer for graphs—and Deep Graph Infomax—a popular self-supervised learning pipeline for graphs (featured in ZDNet). His research has been used in substantially improving travel-time predictions in Google Maps (featured in CNBC, Endgadget, VentureBeat, CNET, The Verge, and ZDNet), and guiding intuition of mathematicians towards new top-tier theorems and conjectures (featured in Nature, Science, Quanta Magazine, New Scientist, The Independent, Sky News, The Sunday Times, la Repubblica and The Conversation).

More on our website: https://www.epfl.ch/research/domains/...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
CIS Colloquium: Dr. Petar Veličković, Google DeepMind and University of Cambridge

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

CIS Colloquium: Prof. Meisam Razaviyayn, University of Southern California

CIS Colloquium: Prof. Meisam Razaviyayn, University of Southern California

Вычисления с алгоритмическим выравниванием, Петар Величкович | Совместная встреча LMS/IMA 2023

Вычисления с алгоритмическим выравниванием, Петар Величкович | Совместная встреча LMS/IMA 2023

DeepMind's TacticAI: an AI assistant for football tactics | Petar Veličković

DeepMind's TacticAI: an AI assistant for football tactics | Petar Veličković

WSDL 2025: Plenary Talk by Dr. Petar Velickovic

WSDL 2025: Plenary Talk by Dr. Petar Velickovic

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

How AI Cracked the Protein Folding Code and Won a Nobel Prize

How AI Cracked the Protein Folding Code and Won a Nobel Prize

The Most Misunderstood Concept in Physics

The Most Misunderstood Concept in Physics

I Skied Down Mount Everest (world first, no oxygen)

I Skied Down Mount Everest (world first, no oxygen)

Representation Learning on Graphs and Networks - Dr. Petar Veličković

Representation Learning on Graphs and Networks - Dr. Petar Veličković

The Passage of Time and the Meaning of Life | Sean Carroll

The Passage of Time and the Meaning of Life | Sean Carroll

Petar Veličković: Graph Deep Learning: Monoids and time, Embracing asynchrony in (G)NNs

Petar Veličković: Graph Deep Learning: Monoids and time, Embracing asynchrony in (G)NNs

Бывший рекрутер Google объясняет, почему «ложь» помогает получить работу.

Бывший рекрутер Google объясняет, почему «ложь» помогает получить работу.

Если вы не понимаете это, то вы не понимаете теорию эволюции [Veritasium]

Если вы не понимаете это, то вы не понимаете теорию эволюции [Veritasium]

Do LLMs Understand? AI Pioneer Yann LeCun Spars with DeepMind’s Adam Brown.

Do LLMs Understand? AI Pioneer Yann LeCun Spars with DeepMind’s Adam Brown.

CIS COLLOQUIUM : Prof. Jean-Philippe Vert - Differentiable Ranking and Sorting

CIS COLLOQUIUM : Prof. Jean-Philippe Vert - Differentiable Ranking and Sorting

The Melting Pot of Neural Algorithmic Reasoning, Petar Veličković

The Melting Pot of Neural Algorithmic Reasoning, Petar Veličković

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Nobel Prize lecture: Demis Hassabis, Nobel Prize in Chemistry 2024

Nobel Prize lecture: Demis Hassabis, Nobel Prize in Chemistry 2024

Think Fast, Talk Smart: Communication Techniques

Think Fast, Talk Smart: Communication Techniques

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]