ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Discover How to Find a Function's Maximum with scipy.minimize

Find a function maximum with scipy.minimize

python

function

optimization

lambda

scipy optimize minimize

Автор: vlogize

Загружено: 2025-03-28

Просмотров: 1

Описание: Learn how to optimize functions in Python by maximizing them with `scipy.minimize` using the BFGS method. We break down the steps and provide code examples!
---
This video is based on the question https://stackoverflow.com/q/70308748/ asked by the user 'Andrés Ortega' ( https://stackoverflow.com/u/17647054/ ) and on the answer https://stackoverflow.com/a/70308891/ provided by the user 'AbbeGijly' ( https://stackoverflow.com/u/13418705/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Find a function maximum with scipy.minimize

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Maximizing Functions in Python Using scipy.minimize

When it comes to optimization in Python, you're likely to encounter situations where you need to find the maximum of a given function. In this guide, we'll explore how to achieve that using the scipy.optimize.minimize function, particularly applying the BFGS method. If this sounds challenging to you, worry not! We'll break down the solution step-by-step.

The Challenge: Finding a Maximum

Suppose you have a function defined as follows:

[[See Video to Reveal this Text or Code Snippet]]

Your task is to find the maximum value of functions A and B by leveraging scipy.minimize. However, you are restricted from modifying the functions themselves. Instead, you can only adjust how they are called during the minimization.

The Approach: Minimizing the Negative

The fundamental insight is that to find the maximum of a function, you can minimize its negative. This means that instead of maximizing f(x), you will minimize -f(x). Here’s how you can implement this:

Step 1: Set Up the Environment

First, ensure you have the necessary library imported:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create a Function for Minimization

For function A, you create a lambda function that calls -A(x):

[[See Video to Reveal this Text or Code Snippet]]

This code effectively finds the maximum of A starting from an initial guess of 0. As a result, it will print:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Repeat for Function B

Apply the same logic to function B:

[[See Video to Reveal this Text or Code Snippet]]

You should get an output close to -2, which in this case will be printed as:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Compact One-Liner

If you prefer a more concise approach, you can encapsulate the minimization in a one-liner:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Minimizing Both Functions Simultaneously

If you want to find the maximum for both functions simultaneously, you can create a function that takes a vector as input. This would look like:

[[See Video to Reveal this Text or Code Snippet]]

This will give you results like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Finding the maximum of a function using scipy.minimize might initially seem daunting, but once you recognize that maximizing a function is akin to minimizing its negative, the process becomes much simpler. By following these structured steps, you can effectively tackle various optimization problems in Python with ease.

Feel free to play around with the initial guesses in the minimization routine and explore how they impact the results! Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Discover How to Find a Function's Maximum with scipy.minimize

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

How To Use Functions In Python (Python Tutorial #3)

How To Use Functions In Python (Python Tutorial #3)

Что происходит с нейросетью во время обучения?

Что происходит с нейросетью во время обучения?

What is convolution? This is the easiest way to understand

What is convolution? This is the easiest way to understand

How to Start Coding | Programming for Beginners | Learn Coding | Intellipaat

How to Start Coding | Programming for Beginners | Learn Coding | Intellipaat

Заявление Путина о завершении войны / Последнее условие

Заявление Путина о завершении войны / Последнее условие

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

The Quicksort Sorting Algorithm: Pick A Pivot, Partition, & Recurse

The Quicksort Sorting Algorithm: Pick A Pivot, Partition, & Recurse

Учебник по Excel за 15 минут

Учебник по Excel за 15 минут

⚡️ Путин резко ответил Западу || Потеря территорий

⚡️ Путин резко ответил Западу || Потеря территорий

Что такое REST API? HTTP, Клиент-Сервер, Проектирование, Разработка, Документация, Swagger и OpenApi

Что такое REST API? HTTP, Клиент-Сервер, Проектирование, Разработка, Документация, Swagger и OpenApi

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]